Advertisement

Comprehensive Investigation of Some Ordinary Chondrites Based on X-Ray Methods and Mössbauer Spectroscopy

  • L. V. Guda
  • A. N. KravtsovaEmail author
  • A. A. Guda
  • S. P. Kubrin
  • M. I. Mazuritskiy
  • A. V. Soldatov
Article
  • 17 Downloads

Abstract

Comprehensive investigation into ordinary chondrites presented by the species of Markovka (H4 petrological type), Polujamki (H4 type) and Jiddat Al Harasis 055 (L4-5 type) is performed. The element and phase compositions, as well as the oxidation states of iron and nickel in the chondrites, are examined via micro X-ray fluorescence (micro-XRF), Mössbauer spectroscopy and synchrotron-based X-ray absorption spectroscopy. Elemental composition analysis is performed using micro-XRF, allowing one to obtain element distribution maps for the meteorite samples. According to Mössbauer spectroscopy data gathered on iron-containing phases, the chondrites consist mainly of olivine and goethite with a small amount of pyroxene and hematite. A low amount of troilite and kamacite is also observed in the Markovka and Polujamki specimens. The oxidation states of 3d metals in the chondrites are estimated from Fe and Ni K-edge X-ray absorption near-edge structure (XANES) spectra. Most nickel atoms in the meteorites are found to be in the Ni2+ state, while iron has an average oxidation state of +2.4 which is commensurate with the Mössbauer spectroscopy data. Infrared spectroscopy analysis of the chondrites is implemented as well. The results are important from the viewpoint of statistics acquisition on ordinary chondrites, as well as for further understanding of their formation.

Keywords:

meteorites ordinary chondrites element and phase composition iron and nickel oxidation state micro XRF analysis element mapping Mössbauer spectroscopy X-ray absorption spectroscopy XANES 

Notes

ACKNOWLEDGMENTS

We are grateful to A. A. Tereshchenko for help in acquiring the IR spectroscopy data.

FUNDING

This work was supported by the Ministry of Education and Science of the Russian Federation (state task no. 16.3871.2017/4.6).

REFERENCES

  1. 1.
    J. Aramendia, L. Gomez-Nubla, K. Castro, et al., Trends Anal. Chem. 98, 36 (2018).  https://doi.org/10.1016/j.trac.2017.10.018 CrossRefGoogle Scholar
  2. 2.
    K. C. Daviau, R. G. Mayne, and A. J. Ehlmann, 43rd Lunar Planet. Sci. Conf (The Woodlands, TX, 2012).Google Scholar
  3. 3.
    I. Torre-Fidez, J. Aramendia, L. Gomez-Nubla, et al., Anal. Bioanal. Chem 410, 7477 (2018).  https://doi.org/10.1007/s00216-018-1363-5 CrossRefGoogle Scholar
  4. 4.
    M. Haschke, U. Rossek, R. Tagle, and U. Waldschläger, Adv X-Ray Anal. 55, 286 (2012).Google Scholar
  5. 5.
    J. M. Cadogan, L. Rebbouh, J. V. J. Mills, and P. A. Bland, Hyperfine Interact. 222 (Suppl. 2), 91 (2013).  https://doi.org/10.1007/s10751-012-0644-1 CrossRefGoogle Scholar
  6. 6.
    A. A. Maksimova, M. I. Oshtrakh, E. V. Petrova, et al., Hyperfine Interact. 237, 134 (2016).  https://doi.org/10.1007/s10751-016-1344-z CrossRefGoogle Scholar
  7. 7.
    N. N. Elewa and J. M. Cadogan, Hyperfine Interact. 238, 4 (2017).  https://doi.org/10.1007/s10751-016-1350-1 CrossRefGoogle Scholar
  8. 8.
    N. N. Elewa, R. Cobas, and J. M. Cadogan, Hyperfine Interact. 237, 107 (2016).  https://doi.org/10.1007/s10751-016-1315-4 CrossRefGoogle Scholar
  9. 9.
    W. Sato, M.·Nakagawa, N. Shirai, and M. Ebihara, Hyperfine Interact. 239, 13 (2018).  https://doi.org/10.1007/s10751-018-1489-z CrossRefGoogle Scholar
  10. 10.
    Y. Kebukawa, C. M. O’D. Alexander, and G. D. Cody, Geochim. Cosmochim. Acta 75, 3530 (2011).  https://doi.org/10.1016/j.gca.2011.03.037 CrossRefGoogle Scholar
  11. 11.
    C. M. O’D. Alexander, G. D. Cody, Y. Kebukawa, et al., Meteorit. Planet. Sci 49 (4), 503 (2014).  https://doi.org/10.1111/maps.12282 CrossRefGoogle Scholar
  12. 12.
    A. Kereszturi, I. Gyollai, Zc. Kereszty, et al., Spectrochim. Acta A Mol. Biomol. Spectrosc. 173, 637 (2017).  https://doi.org/10.1016/j.saa.2016.10.012 CrossRefGoogle Scholar
  13. 13.
    I. Gyollai, A. Kereszturi, Z. Kereszty, et al., Centr. Eur. Geol. 60/2, 173 (2017).  https://doi.org/10.1556/24.60.2017.007 CrossRefGoogle Scholar
  14. 14.
    Y. A. Abdu, F. C. Hawthorne, and M. E. Varela, Astrophys. J. Lett. 856, L9 (2018).  https://doi.org/10.3847/2041-8213/aab433 CrossRefGoogle Scholar
  15. 15.
    G. Bunker, Introduction to XAFS: A Practical Guide to X‑Ray Absorption Fine Structure Spectroscopy (Cambridge University Press, Cambridge, 2011).Google Scholar
  16. 16.
    X-Ray Absorption and X-Ray Emission Spectroscopy. Theory and Applications, Ed. by J. van Bokhoven and C. Lamberti, (Wiley, Chichester, UK, 2016).Google Scholar
  17. 17.
    A. N. Kravtsova, L. V. Guda, O. E. Polozhentsev et al., J. Struct. Chem. 59 (7), 1691 (2018).  https://doi.org/10.26902/JSC20180725 CrossRefGoogle Scholar
  18. 18.
    A. J. Berry, P. F. Schofield, A. N. Kravtsova, et al., Chem. Geol. 466, 32 (2017).  https://doi.org/10.1016/j.chemgeo.2017.03.031 CrossRefGoogle Scholar
  19. 19.
    A. N. Kravtsova, A. V. Soldatov, A. M. Walker, and A. J. Berry, J. Phys. Conf. Ser. 712, 012089 (2016).  https://doi.org/10.1088/1742-6596/712/1/012089 CrossRefGoogle Scholar
  20. 20.
    A. N. Kravtsova, A. A. Guda, J. Goettlicher, et al., J. Phys. Conf. Ser. 712, 012096 (2016).  https://doi.org/10.1088/1742-6596/712/1/012096 CrossRefGoogle Scholar
  21. 21.
    A. N. Kravtsova, A. A. Guda, A. V. Soldatov, et al., Opt. Spectrosc. 119 (6), 982 (2015).  https://doi.org/10.7868/S003040341511015X CrossRefGoogle Scholar
  22. 22.
    I. S. Rodina, A. N. Kravtsova, A. V. Soldatov, et al., Opt. Spectrosc. 115 (6), 858 (2013).  https://doi.org/10.7868/S0030403413120179 CrossRefGoogle Scholar
  23. 23.
    I. S. Rodina, A. N. Kravtsova, A. V. Soldatov, and A. J. Berry, Opt. Spectrosc. 111 (6), 936 (2011).CrossRefGoogle Scholar
  24. 24.
    I. S. Rodina, A. N. Kravtsova, M. A. Soldatov, et al., J. Phys. Conf. Ser 190, 012181 (2009).  https://doi.org/10.1088/1742-6596/190/1/012181 CrossRefGoogle Scholar
  25. 25.
    Y. Kebukawa, M. E. Zolensky, A. L. D. Kilcoyne, et al., Meteorit. Planet. Sci 49, 2095 (2014).CrossRefGoogle Scholar
  26. 26.
    Y. Kebukawa, M. E. Zolensky, M. Fries, et al., 47th Lunar Planet. Sci. Conf. (The Woodlands, TX, 2016), p. 1802.Google Scholar
  27. 27.
    S. Wirick, G. J. Flynn, C. Jacobsen, and L. P. Keller, 37th Lunar Planet. Sci. Conf. (The Woodlands, TX, 2006).Google Scholar
  28. 28.
    H. Yabuta, S. Amari, J. Matsuda, et al., 41st Lunar Planet. Sci. Conf. (The Woodlands, TX, 2010), p. 1202.Google Scholar
  29. 29.
    F. L. le Formal, N. Guijarro, W. S. Bourée, et al., Energy Environ. Sci 9, 3448 (2016).  https://doi.org/10.1039/C6EE02375D CrossRefGoogle Scholar
  30. 30.
    M. Bose, R. A. Root, and S. Pizzarello, Meteorit. Planet. Sci 52, 546 (2017).  https://doi.org/10.1111/maps.12811 CrossRefGoogle Scholar
  31. 31.
    H. Ono, A. Takenouchi and T. Mikouchi, 79th Annual Meeting of the Meteoritical Society (Berlin, Germany, 2016).Google Scholar
  32. 32.
    A. J. King, P. F. Schofield, J. F. W. Mosselmans, and S. S. Russell, 77th Annual Meeting of the Meteoritical Society (Casablanca, Morocco, 2014).Google Scholar
  33. 33.
    A. Garenne, P. Beck, G. Montes-Hernandez, et al., 45th Lunar Planet. Sci. Conf. (The Woodlands, TX, 2014).Google Scholar
  34. 34.
    F. -R. Orthous-Daunay, E. Quirico, L. Lemelle, et al., Earth Planet. Sci. Lett. 300, 321 (2010).  https://doi.org/10.1016/j.epsl.2010.10.012 CrossRefGoogle Scholar
  35. 35.
    P. Beck, V. De Andrade, F. -R. Orthous-Daunay, et al., Geochim. Cosmochim. Acta 99, 305 (2012).  https://doi.org/10.1016/j.gca.2012.04.041 CrossRefGoogle Scholar
  36. 36.
    A. Ali, S. J. Nasir, I. Jabeen, et al., Meteorit. Planet. Sci 52, 1991 (2017).  https://doi.org/10.1111/maps.12903 CrossRefGoogle Scholar
  37. 37.
    T. Yokoyama, K. Misawa, O. Okano, et al., Earth Planet. Sci. Lett. 458, 233 (2017).  https://doi.org/10.1016/j.epsl.2016.10.037 CrossRefGoogle Scholar
  38. 38.
    S. Wirick, G. J. Flynn, S. Sutton, and M. E. Zolensky, 45th Lunar Planet. Sci. Conf. (The Woodlands, TX, 2014).Google Scholar
  39. 39.
    A. N. Mikhanov and N. D. Kotel’nikova, Meteoritika 47, 20 (1988).Google Scholar
  40. 40.
    O. A. Kirova, M. I. D’yakonova, and V. Ya Kharitonova, Meteoritika 34, 57 (1975).Google Scholar
  41. 41.
    S. S. Russell, L. Folco, M. M. Grady, et al., Meteorit. Planet. Sci 39, A 215 (2004).Google Scholar
  42. 42.
    M. E. Matsnev and V. S. Rusakov, AIP Conf. Proc 1489, 178 (2012).  https://doi.org/10.1063/1.4759488 CrossRefGoogle Scholar
  43. 43.
    B. Ravel and M. Newville, J. Synchrotron Radiat 12, 537 (2005).  https://doi.org/10.1107/S0909049505012719 CrossRefGoogle Scholar
  44. 44.
    F. Menil, J. Phys. Chem. Solids 46 (7), 763 (1985).  https://doi.org/10.1016/0022-3697(85)90001-0 CrossRefGoogle Scholar
  45. 45.
    Y. A. Abdu and T. Ericsson, Meteorit. Planet. Sci 32, 373 (1997).CrossRefGoogle Scholar
  46. 46.
    E. Dos Santos, J. Gattacceca, P. Rochette, et al., Phys. Earth Planet. Inter. 242, 50 (2015).  https://doi.org/10.1016/j.pepi.2015.01.004 CrossRefGoogle Scholar
  47. 47.
    B. S. Paliwal, R. P. Tripathi, H. C. Verma, et al., Meteorit. Planet. Sci 35, 639 (2000).CrossRefGoogle Scholar
  48. 48.
    A. M. Gismelseed, Y. A. Abdu, M. H. Shaddad, et al., Meteorit. Planet. Sci 49, 1485 (2014).CrossRefGoogle Scholar
  49. 49.
    S. Bedanta and W. Kleemann, J. Phys. D: Appl. Phys. 42, 013001 (2009).CrossRefGoogle Scholar
  50. 50.
    W. Kündig and H. Bömmel, Phys. Rev. 142, 327 (1966).  https://doi.org/10.1103/PhysRev.142.327 CrossRefGoogle Scholar
  51. 51.
    S. Bocquet, R. J. Pollard, and J. D. Cashion, Phys. Rev. 46, 11657 (1992).  https://doi.org/10.1103/PhysRevB.46.11657 CrossRefGoogle Scholar
  52. 52.
    U. Schwertmann, P. Cambier, and E. Murad, Clays Clay Miner. 33, 369 (1985).CrossRefGoogle Scholar
  53. 53.
    M. Wilke, F. Farges, P. -E. Petit, et al., Am. Mineral. 86, 714 (2001).  https://doi.org/10.2138/am-2001-5-612 CrossRefGoogle Scholar
  54. 54.
    A. N. Kravtsova, L. V. Guda, A. A. Guda, et al., Radiat. Phys. Chem. (in press).  https://doi.org/10.1016/j.radphyschem.2018.12.017
  55. 55.
    G. Giuli, S. G. Eeckhout, E. Paris, et al., Meteorit. Planet. Sci. 40, 1575 (2005).  https://doi.org/10.1111/j.1945-5100.2005.tb00132.x CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. V. Guda
    • 1
  • A. N. Kravtsova
    • 1
    Email author
  • A. A. Guda
    • 1
  • S. P. Kubrin
    • 2
  • M. I. Mazuritskiy
    • 3
  • A. V. Soldatov
    • 1
  1. 1.Smart Materials Research Institute, Southern Federal UniversityRostov-on-DonRussia
  2. 2.Research Institute of Physics, Southern Federal UniversityRostov-on-DonRussia
  3. 3.Physics Faculty, Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations