Advertisement

Electrophysical Properties of Polycrystalline CuIn0.95Ga0.05Se2 Films

  • T. M. Gadzhiev
  • M. A. Aliev
  • A. Sh. AsvarovEmail author
  • G. A. Aliev
  • A. E. MuslimovEmail author
  • V. M. Kanevsky
Article
  • 13 Downloads

Abstract

Polycrystalline CuIn0.95Ga0.05Se2 films are obtained by a two-step procedure of the controlled selenization of intermetallic CuIn0.95Ga0.05 layers. The effect of the selenization temperature and the selenized intermetallic-film thickness on the structure and electrophysical properties of the formed selenide films is studied. With an increase in the selenization temperature, the degree of imperfection of the polycrystalline films is shown to decrease and the efficiency of Ga incorporation into the crystal lattice is shown to increase. Based on the results of studying the electrophysical properties of synthesized samples, the nature of the microstructure effect on the current-transfer mechanisms in polycrystalline CuIn0.95Ga0.05Se2 films is discussed.

Keywords:

selenide film electroconductivity stoichiometry structure activation energy 

Notes

FUNDING

The work was supported by the Ministry of Science and Education of the Russian Federation within State Contracts of the Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences and the Federal Scientific Research Center “Crystallography and Photonics” using their facilities for growth and characterization of the films and by the Russian Foundation for Basic Research (project No. 18-29-12 099 mk) for the study of the electrophysical properties of the films.

REFERENCES

  1. 1.
    H.-W. Schock and R. Noufi, Prog. Photovoltaics 8 (1), 151 (2000).CrossRefGoogle Scholar
  2. 2.
    P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. Magorian Friedlmeier, and M. Powalla, Phys. Status Solidi RRL 9 (1), 28 (2015).CrossRefGoogle Scholar
  3. 3.
    J. Chantana and T. Minemoto, AAPPS Bull. 27 (2), 7 (2017).Google Scholar
  4. 4.
    G. F. Novikov and M. V. Gapanovich, Physics–Uspekhi 60 (2), 161 (2017).CrossRefGoogle Scholar
  5. 5.
    G. Y. Kim, W. Jo, H.-J. Jo, D.-H. Kim, and J.-K. Kang, Curr. Appl. Phys. 15, 44 (2015).CrossRefGoogle Scholar
  6. 6.
    M. Monsefi and D. Kuo, J. Electron. Mater. 43 (4), 1214 (2014).CrossRefGoogle Scholar
  7. 7.
    X. Zhang, M. Manno, A. Baruth, M. Johnson, E. S. Aydil, and C. Leighton, ACS Nano 7 (3), 2781 (2013).CrossRefGoogle Scholar
  8. 8.
    R. Huh, H. Ahn, and Y. Um, New Physics: Sae Mulli 65 (8), 735 (2015).CrossRefGoogle Scholar
  9. 9.
    M. A. Aliev, S. N. Kallaev, T. M. Gadzhiev, R. M. Gadzhieva, A. M. Ismailov, and B. A. Bilalov, Tech. Phys. Lett. 42 (7), 715 (2016).CrossRefGoogle Scholar
  10. 10.
    T. M. Gadzhiev, M. A. Aliev, A. Sh. Asvarov, R. M. Gadzhieva, B. A. Bilalov, A. M. Ismailov, and Z. V. Shomakhov, Izv. Vyssh. Uchebn. Zaved., Elektron. 24 (2), 107 (2019).Google Scholar
  11. 11.
    E. P. Skipetrov, E. A. Zvereva, L. A. Skipetrova, V. V. Belousov, and A. M. Mousalitin, J. Cryst. Growth 210, 292 (2000).CrossRefGoogle Scholar
  12. 12.
    S. A. Kolosov, Yu. V. Klevkov, and A. F. Plotnikov, Semiconductors 38 (3), 293 (2004).CrossRefGoogle Scholar
  13. 13.
    E. J. Friedrich, R. Fernández-Ruiz, J. M. Merino, and M. León, Powder Diffr. 25 (3), 253 (2010).CrossRefGoogle Scholar
  14. 14.
    S. B. Zhang, S.-H. Wei, and A. Zunger, Phys. Rev. 57 (16), 9642 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. M. Gadzhiev
    • 1
  • M. A. Aliev
    • 1
  • A. Sh. Asvarov
    • 1
    • 2
    Email author
  • G. A. Aliev
    • 3
  • A. E. Muslimov
    • 2
    Email author
  • V. M. Kanevsky
    • 2
  1. 1.Amirkhanov Institute of Physics, Dagestan Scientific Center, Russian Academy of SciencesMakhachkalaRussia
  2. 2.Shubnikov Institute of Crystallography, Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of SciencesMoscowRussia
  3. 3.Dagestan State Technical UniversityMakhachkalaRussia

Personalised recommendations