Advertisement

Design of a Single-Crystal Diffractometer for the PIK Reactor

  • A. A. BykovEmail author
  • O. P. Smirnov
Article
  • 10 Downloads

Abstract

The scheme of arrangement of a four-circle diffractometer on a thermal neutron beam from the HEC-9 channel of the PIK reactor is proposed. Calculations are performed using analytical and numerical approaches. The setup parameters are optimized: the resolution, the size of the focusing monochromator and its curvature in the vertical and horizontal directions, the efficiency of filters, and the monochromatic neutron-flux density on the sample, with which the maximum intensity is achieved in the detector. It is shown that the beam intensity at the position of the detector is a more important parameter than the intensity at the sample position during device optimization. The device characteristic obtained will allow studying the atomic and magnetic structure of a wide class of crystals.

Keywords:

diffraction neutron tools resolution McStas 

Notes

ACKNOWLEDGMENTS

We are grateful to M.S. Onegina for the granted spectrum for the HEC-9 channel.

REFERENCES

  1. 1.
    Yu. Z. Nozik, K. P. Ozerov, and K. Hennig, Neutrons and Solids. Structural Neutron Diffractometry (Atomizdat, Moscow, 1979) [in Russian].Google Scholar
  2. 2.
    A. N. Erykalov, I. A. Kondurov, and K. A. Konoplev, Preprint No. 852, LIYaF (Leningrad Institute of Nuclear Physics, 2013).Google Scholar
  3. 3.
    B. Pedersen, J. Large-Scale Res. Facil. 1 (A4), 8 (2015).Google Scholar
  4. 4.
    G. Cicognani, The ILL Yellow Book [Electronic resource]. 2008. http://www.ill.eu/fileadmin/users_files/Other_Sites/YellowBook2008CDRom/index.htm.Google Scholar
  5. 5.
    Experimental facilities Laboratoire Léon Brillouin. http://www-llb.cea.fr/fr-en/spectros-llb.pdf.Google Scholar
  6. 6.
    G. Caglioti, Acta Crystallogr. 17 (10), 1202 (1964).CrossRefGoogle Scholar
  7. 7.
    M. J. Cooper and R. Nathans, Acta Crystallogr., Sect. A 24 (5), 481 (1968).CrossRefGoogle Scholar
  8. 8.
    K. Lefmann and K. Nielsen, Neutron News 10 (3), 20 (1999).CrossRefGoogle Scholar
  9. 9.
    A. Vickery, L. Udby, N. Violini, J. Voigt, P. Deen, and K. Lefmann, J. Phys. Soc. Jpn. 82, SA037 (2013).CrossRefGoogle Scholar
  10. 10.
    A. K. Freund, Nucl. Instrum. Methods. Phys. Res. Sect. A 238 (2–3), 570 (1985).CrossRefGoogle Scholar
  11. 11.
    H. Schober, in Neutron Applications in Earth, Energy and Environmental Sciences, Ed. by L. Liyuan, R. Rinaldi, and H. Schober (Springer, New York, 2009), p. 37.Google Scholar
  12. 12.
    V. Wagner, P. Mikula, P. Lukáš, R. Scherm, and L. Sedláková, Phys. B Condens. Matter. 180–181, 978 (1992).Google Scholar
  13. 13.
    L. Alianelli, M. Sanchez Del Rio, and R. Felici, Proc. SPIE–Int. Soc. Opt. Eng. 4509, 135 (2001).Google Scholar
  14. 14.
    A. K. Freund, Nucl. Instrum. Methods. Phys. Res. A 213 (2), 495 (1983).CrossRefGoogle Scholar
  15. 15.
    D. Lançon, R. Ewings, J. Stewart, M. Jiménez-Ruiz, and H. Rønnow, Nucl. Instrum. Methods Phys. Res. A. 780, 9 (2015).CrossRefGoogle Scholar
  16. 16.
    R. Vorderwisch, U. Stuhr, and S. Hautecler, J. Neutron Res. 7 (2), 119 (1999).CrossRefGoogle Scholar
  17. 17.
    A. Teitsma, Nucl. Instrum. Methods Phys. Res. 174 (1), 325 (1980).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Konstantinov Petersburg Nuclear Physics Institute, National Research Centre “Kurchatov Institute”GatchinaRussia

Personalised recommendations