Advertisement

Formation of SEM Images in the Secondary Electron Mode. 2. Structures with a Trapezoidal Profile and Small Side-Wall Inclinations

  • Yu. A. NovikovEmail author
Article
  • 8 Downloads

Abstract

The formation of images of silicon microstructures in a scanning electron microscope, operating in the modes of collecting secondary slow electrons (SSEs) and backscattered electrons (BSEs), is studied. Grooves in electronic silicon with a trapezoidal profile and small angles of inclination of the side walls with a nominal width of 1 µm and a depth of 300 nm are used as the object of study. It is shown that among four mechanisms for the formation of BSE images, currently known, only two mechanisms contribute to the formation of SSE images. They take into account the formation of an image by the primary electron probe and by multiply scattered primary and secondary electrons coming from the surface of a solid. Multiply scattered secondary electrons moving in the direction of probe electron motion, which make the main contribution to the formation of the BSE image, do not contribute to the formation of the SSE image.

Keywords:

test object relief structures scanning electron microscope SEM slow secondary electrons backscattered electrons imaging mechanisms 

Notes

ACKNOWLEDGMENTS

The author thank A.V. Rakov and M.N. Filippov for participating in experiments and useful discussions.

REFERENCES

  1. 1.
    L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (Springer, Berlin–Heidelberg, 1998).CrossRefGoogle Scholar
  2. 2.
    H. M. Marchman, J. E. Griffith, J. Z. Y. Guo, J. Frackoviak, and G. K. Celler, J. Vac. Sci. Technol. B 12 (6), 3585 (1994).CrossRefGoogle Scholar
  3. 3.
    Yu. A. Novikov and A. V. Rakov, Russ. Microelectron. 25 (6), 368 (1996).Google Scholar
  4. 4.
    Yu. A. Novikov and A. V. Rakov, Meas. Tech., 42 (1), 20 (1999).CrossRefGoogle Scholar
  5. 5.
    M. T. Postek and A. E. Vladar, “Critical dimension metrology and the scanning electron microscope”, in Handbook of Silicon Semiconductor Metrology, Ed. by A.C. Diebold (Marcel Dekker, Basel–New York, 2001).Google Scholar
  6. 6.
    M. M. Krishtal, I. S. Yasnikov, V. I. Polunin, A. M. Filatov, and A. G. Ul’yanenkov, Scanning Electron Microscopy and X-Ray Spectral Microanalysis in Practical Examples (Tekhnosfera, Moscow, 2009) [in Russian].Google Scholar
  7. 7.
    Scanning Microscopy for Nanotechnology. Techniques and Applications, Ed. by W. Zhou and Zh. L. Wang (Springer, New York, 2007; BINOM. Laboratoriya znanii, Moscow, 2013).Google Scholar
  8. 8.
    Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. V. Ozerin, Yu. I. Plotnikov, A. M. Prokhorov, and A. V. Rakov, Russ. Microelectron. 31 (4), 207 (2002).CrossRefGoogle Scholar
  9. 9.
    Yu. A. Novikov, V. P. Gavrilenko, A. V. Rakov, and P. A. Todua, Proc. SPIE. 7042, 704208 (2008).  https://doi.org/10.1117/12.794834
  10. 10.
    V. P. Gavrilenko, V. B. Mityukhlyaev, Yu. A. Novikov, Yu. V. Ozerin, A. V. Rakov, and P. A. Todua, Meas. Sci. Technol. 20, 20 (2009).  https://doi.org/10.1088/0957-0233/20/8/084022 CrossRefGoogle Scholar
  11. 11.
    C. G. Frase, W. Hassler-Grohne, G. Dai, H. Bosse, Yu. A. Novikov, and A. V. Rakov, Meas. Sci. Technol. 18, 439 (2007).  https://doi.org/10.1088/0957-0233/18/2/S1610.1088/0957-0233/18/2/S16CrossRefGoogle Scholar
  12. 12.
    Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 11 (6), 1260 (2017).  https://doi.org/10.1134/S1027451017060179 CrossRefGoogle Scholar
  13. 13.
    Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 12 (6), 1224 (2018).  https://doi.org/10.1134/S1027451018050658 CrossRefGoogle Scholar
  14. 14.
    Yu. A. Novikov and I. Yu. Stekolin, Problems of linear measurements of microobjects in nanometer and submicron ranges. Moscow: Nauka, 1995, P. 41 (Proc. IOFAN, Vol. 49), [in Russian].Google Scholar
  15. 15.
    Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. V. Ozerin, Yu. I. Plotnikov, and A. V. Rakov, Russ. Microelectron. 33 (6), 342 (2004).CrossRefGoogle Scholar
  16. 16.
    V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, P. A. Todua, and Ch. P. Volk, Proc. SPIE. 7272, 72720Z (2009). doi https://doi.org/10.1117/12.813514
  17. 17.
    V. P. Gavrilenko, E. N. Lesnovskii, Yu. A. Novikov, A. V. Rakov, P. A. Todua, and M. N. Filippov, Bull. Russ. Acad. Sci.: Phys. 73 (4), 433 (2009).CrossRefGoogle Scholar
  18. 18.
    V. P. Gavrilenko, M. N. Filippov, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE. 7378, 737812 (2009).  https://doi.org/10.1117/12.821760
  19. 19.
    V. P. Gavrilenko, V. A. Kalnov, Yu. A. Novikov, A. A. Orlikovsky, A. V. Rakov, P. A. Todua, K. A. Valiev, and E. N. Zhikharev, Proc. SPIE. 7272, 727227 (2009).  https://doi.org/10.1117/12.814062
  20. 20.
    M. A. Danilova, V. B. Mityukhlyaev, Yu. A. Novikov, Yu. V. Ozerin, A. V. Rakov, and P. A. Todua, Meas. Tech. 51 (8), 839 (2008). doi: 10.1007/s11018-008-9135-9. https://doi.org/10.1007/s11018-008-9152-8 CrossRefGoogle Scholar
  21. 21.
    Yu. A. Novikov, A. V. Rakov, and M. N. Filippov, Bull. Russ. Acad. Sci.: Phys. 62 (3), 439 (1998).Google Scholar
  22. 22.
    M. N. Filippov, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE. 7521, 752116 (2010).  https://doi.org/10.1117/12.854696
  23. 23.
    Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE. 6260, 626015 (2006).  https://doi.org/10.1117/12.683401
  24. 24.
    V. Gavrilenko, Yu. Novikov, A. Rakov, and P. Todua, Nanoindustriya, No. 4, 36 (2009) [in Russian].Google Scholar
  25. 25.
    V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE. 7405, 740504 (2009).  https://doi.org/10.1117/12.826164
  26. 26.
    Yu. A. Novikov J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 7 (3), 497 (2013).  https://doi.org/10.1134/S1027451013030105 CrossRefGoogle Scholar
  27. 27.
    Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 7 (4), 802 (2013).  https://doi.org/10.7868/S0207352813080131 CrossRefGoogle Scholar
  28. 28.
    Yu. A. Novikov, A. V. Rakov, and M. N. Filippov, Mechanisms of secondary electron emission from a relief surface of solids. Moscow: Nauka. Fizmatlit, 1998, P. 100. (Proc. IOFAN, Vol. 55). [in Russian].Google Scholar
  29. 29.
    Yu. A. Novikov, A. V. Rakov, and M. N. Filippov, Izv. Vyss. Elektronika, No. 1, 91 (1998) [in Russian].Google Scholar
  30. 30.
    Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 5, 917 (2011).CrossRefGoogle Scholar
  31. 31.
    Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 8 (4), 775 (2014).  https://doi.org/10.1134/S1027451014040296 CrossRefGoogle Scholar
  32. 32.
    Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 9 (3), 496 (2015).  https://doi.org/10.1134/S102745101503009X CrossRefGoogle Scholar
  33. 33.
    Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 9 (5), 1060 (2015).  https://doi.org/10.1134/S1027451015050389 CrossRefGoogle Scholar
  34. 34.
    Yu. A. Novikov J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 10 (1), 221 (2016).  https://doi.org/10.1134/S1027451016010286 CrossRefGoogle Scholar
  35. 35.
    Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 9 (5), 892 (2016).  https://doi.org/10.1134/S1027451016050116 CrossRefGoogle Scholar
  36. 36a.
    Yu. A. Novikov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 13 (4), 727 (2019).Google Scholar
  37. 37.
    Yu.A. Novikov, A.V. Rakov, Mechanisms of secondary electron emission from a relief surface of solids, Moscow: Nauka. Fizmatlit, 1998, P. 3, Proc. IOFAN, Vol. 55). [in Russian].Google Scholar
  38. 38.
    Yu. A. Novikov and A. V. Rakov, Surface Investigation, 15, No. 8, 1177 (2000).Google Scholar
  39. 39.
    Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. I. Plotnikov, A. V. Rakov, and P. A. Todua, Linear measurements in micrometer and nanometer ranges for microelectronics and nanotechnology, Moscow: Nauka, 2006, P. 77. (Proc. IOFAN, Vol. 62). [in Russian].Google Scholar
  40. 40.
    V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE. 7042, 70420C (2008).  https://doi.org/10.1117/12.794891
  41. 41.
    Yu. A. Novikov, Russ. Microelectron. 43 (4), 258 (2014).  https://doi.org/10.1134/S1063739714040076 CrossRefGoogle Scholar
  42. 42.
    Yu. A. Novikov, Russ. Microelectron. 43 (6), 427 (2014).  https://doi.org/10.1134/S1063739714060079 CrossRefGoogle Scholar
  43. 43.
    Yu. A. Novikov, Russ. Microelectron. 43 (5), 361 (2014).  https://doi.org/10.1134/S1063739714050047 CrossRefGoogle Scholar
  44. 44.
    Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Meas. Tech. 52 (2), 142 (2009).CrossRefGoogle Scholar
  45. 45.
    V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE. 7718, 77180Y (2010).  https://doi.org/10.1117/12.853892
  46. 46.
    Yu. A. Novikov, A. V. Rakov, and I. Yu. Stekolin, Meas. Tech., 39 (12) 1204 (1996). doi: 10.1007/BF02375406CrossRefGoogle Scholar
  47. 47.
    Yu. A. Novikov, S. V. Peshekhonov, and I. B. Strizhkov, Problems of linear measurements of microobjects in nanometer and submicron ranges. Moscow: Nauka, 1995, P. 20 (Proc. IOFAN, Vol. 49). [in Russian].Google Scholar
  48. 48.
    Yu. A. Novikov, S. V. Peshekhonov, A. V. Rakov, S. V. Sedov, A. N. Simonov, I. Yu. Stekolin, and I. B. Strizhkov, Bull. Russ. Acad. Sci.: Phys. 57(8), 1378 (1993).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Prokhorov General Physics Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations