Skip to main content
Log in

Abstract

Pyrolyzed derivatives of yttrium bis-phthalocyanine are studied by small-angle neutron scattering, atomic force microscopy and infrared spectroscopy. Completely destroying bis-phthalocyanine molecules, the pyrolysis process forms thermally stable structures, the intrinsic density and packing of which are determined by the temperature. According to neutron data, during low-temperature pyrolysis (below 1000°C), loose chain structures dominate which consist of small carbon clusters; however, during high-temperature pyrolysis (1000–1500°C), carbon globules, creating branched fractal-type aggregates, are formed. In addition to the data on neutron scattering, the surfaces of pyrolyzed films were visualized by atomic force microscopy to study the fractal properties of the surface as a function of the pyrolysis temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. S. N. Kolokol’tsev, Carbon Materials. Properties, Technology, and Use (Intellekt, Dolgoprudnyi, 2012) [in Russian].

  2. J. Zhang, M. Terrones, and Ch. R. Park, Carbon 98, 708 (2016). https://doi.org/10.1016/j.carbon.2015.11.060

    Article  CAS  Google Scholar 

  3. M. Diener, C. A. Smith, and D. K. Veirs, Chem. Mat. 9, 1773 (1997). https://doi.org/10.1021/cm960540o

    Article  CAS  Google Scholar 

  4. M. V. Ryzhkov, A. L. Ivanovskii, and B. Delley, Nanosyst.: Phys. Chem. Mat. 5, 494 (2014). https://doi.org/10.1016/j.comptc.2012.01.037

    Article  CAS  Google Scholar 

  5. A. Kumar, S. S. K. Pandey, and N. Misra, Mat. Chem. Phys. 177, 437 (2016). https://doi.org/10.1016/j.matchemphys.2016.04.050

    Article  CAS  Google Scholar 

  6. E. G. Rakov, Nanotubes and Fullerenes (Universitetskaya kniga, Moscow, 2006) [in Russian].

  7. A. Loiseau, Full. Sci. Tec 4, 1263 (1996). https://doi.org/10.1080/10641229608001178

    Article  CAS  Google Scholar 

  8. S. Iijima, J. Cryst. Growth 55, 675 (1980). https://doi.org/10.1016/0022-0248(80)90013-5

    Article  Google Scholar 

  9. Y. Saito, Carbon 33, 979 (1995). https://doi.org/10.1016/0008-6223(95)00026-A

    Article  CAS  Google Scholar 

  10. H. Funasaka, J. Appl. Phys. 78, 5320 (1995). https://doi.org/10.1063/1.359709

    Article  CAS  Google Scholar 

  11. B. W. Smith, M. Monthioux, and D. E. Luzzi, Nature 396, 323 (1998). https://doi.org/10.1038/24521

    Article  CAS  Google Scholar 

  12. I. S. Kirin, P. N. Moskalev, and Yu. A. Makashev, Russ. J. Inorg. Chem., 10, 1951 (1965).

    CAS  Google Scholar 

  13. V. I. Tikhonov, V. K. Kapustin, V. T. Lebedev, et al., Radiochem. 58, 545 (2016). https://doi.org/10.1134/S1066362216050167

    Article  CAS  Google Scholar 

  14. R. M. Silverstein, G. C. Bassler and T. C. Morrill, Spectrometric Identification of Organic Compounds (John Wiley, N.Y., 1971; Mir, Moscow, 1977).

  15. A. V. Ziminov, S. M. Ramsh, E. I. Terukov, et al., Semiconductors 40, 1131 (2006). https://doi.org/10.1134/S1063782606100022

    Article  CAS  Google Scholar 

  16. I. A. Belogorokhov, Candidate’s Dissertation in Mathematics and Physics (Moscow, 2009).

  17. V. M. Lebedev, V. T. Lebedev, D. N. Orlova, and V. I. Tikhonov J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8 (3), 411 (2014). https://doi.org/10.7868/S0207352814050096

    Article  CAS  Google Scholar 

  18. V. T. Lebedev, A. E. Sovestnov, V. I. Tikhonov, and Yu. P. Chernenkov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11 (1), 38 (2017). https://doi.org/10.7868/S0207352817010164

    Article  CAS  Google Scholar 

  19. A. E. Sovestnov, V. K. Kapustin, V. I. Tikhonov, et al., Phys. Solid State 56, 1673 (2014). https://doi.org/10.1134/S1063783414080253

    Article  CAS  Google Scholar 

  20. P. N. Moskalev, Koord. Khim. 16, 148 (1990).

    Google Scholar 

  21. V. Yu. Bairamukov, V. T. Lebedev, and V. I. Tikhonov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12 (1), 170 (2018). https://doi.org/10.7868/S0207352818020142

    Article  CAS  Google Scholar 

  22. V. S. Kozlov, V. G. Semenov, K. G. Karateeva, and V. Yu. Bairamukov, Phys. Solid State 60, 1035 (2018). https://doi.org/10.21883/FTT.2018.05.45806.307

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-32-00500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Bairamukov.

Additional information

Translated by M. Samokhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bairamukov, V.Y., Kuklin, A.I., Orlova, D.N. et al. Structure of Yttrium Bis-Phthalocyanine Pyrolyzed Derivatives. J. Surf. Investig. 13, 793–801 (2019). https://doi.org/10.1134/S1027451019050045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019050045

Keywords:

Navigation