Skip to main content
Log in

Measuring the Transverse Sizes of an Electron Beam by the Angular Distribution of the Coherent Radiation of Electrons in a Crystal

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A technique for determining the transverse sizes of a beam on a target from the two-dimensional angular distributions of the radiation for two distances between the emitting crystal and a coordinate detector is proposed. The desired sizes are obtained from the results of fitting, in which the fitted function is the distribution at a shorter distance and the fitting function is the convolution of the angular distribution at a greater distance with a two-dimensional Gaussian distribution with the parameters uniquely related to the beam sizes on the target and crystal-to-detector distance. The limits of applicability of the proposed technique are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. B. Fiorito, in Proceed. Particle Accelerator Conf. Vancouver (2009), p. 741.

    Google Scholar 

  2. J. Urakawa, H. Hayano, K. Kubo, et al., Nucl. Instrum. Methods Phys. Res. A 472, 309 (2001).

    Article  Google Scholar 

  3. G. Kube, H. Backe, W. Lauth, et al., in Proceed. Beam Diagnostic and Instrumentation for Particle Accelerators (Mainz, 2003), p. 40.

    Google Scholar 

  4. H. Loos, R. Akre, F. -J. Decker, et al., in Proceed 30th Int. Free Electron Laser Conf. (Gyeongju, 2008), p. 485.

  5. A. Gogolev, A. Potylitsyn, and G. Kube, J. Phys.: Conf. Ser 357, 012018 (2012).

    Google Scholar 

  6. Y. Takabayashi, Phys. Lett. A 376, 2408 (2012).

    Article  Google Scholar 

  7. R. Rullhusen, X. Artru, and P. Dhez, Novel Radiation Sources Using Relativistic Electrons (World Scientific, Singapore, 1999).

    Google Scholar 

  8. G. M. Garibyan and Y. Shi, Sov. Phys. JETP 61, 930 (1971).

    Google Scholar 

  9. V. G. Baryshevskii and I. D. Feranchuk, Sov. Phys. JETP 61, 944 (1971).

    Google Scholar 

  10. K.-H. Brenzinger, C. Herberg, B. Limburg, et al., Z. Phys. A 358, 107 (1997).

    Google Scholar 

  11. G. Kube, C. Behrens, A. S. Gogolev, et al., in Proceed. Int. Particle Accelerator Conf. (Pasadena, 2013), p. 491.

  12. Y. Takabayashi and K. Sumitani, Phys. Lett. A 377, 2577 (2013).

    Article  Google Scholar 

  13. S. A. Laktionova, O. O. Pligina, M. A. Sidnin, et al., J. Phys.: Conf. Ser 517, 012020 (2014).

    Google Scholar 

  14. Yu. A. Goponov, S. A. Laktionova, M. A. Sidnin, et al., Nucl. Instrum. Methods Phys. Res. 402, 92 (2017).

    Article  Google Scholar 

  15. H. Nitta, Phys. Lett. A 158, 270 (1991).

    Article  Google Scholar 

  16. V. P. Kleiner, N. N. Nasonov, and N. A. Shlyakhov, Ukr. Fiz. Zh. 57, 48 (1992).

    Google Scholar 

  17. G. M. Garibyan and Y. Shi, X-Ray Transition Radiation (Izd. Akad. Nauk Arm. SSR, Erevan, 1983) [in Russian].

    Google Scholar 

  18. E. A. Bogomazova, B. N. Kalinin, G. A. Naumenko, et al., Nucl. Instrum. Methods Phys. Res. 201, 276 (2003).

    Article  Google Scholar 

  19. A. Potylitsin, arXiv cond-mat/9802279 v1, 26 Feb 1998.

  20. A. N. Baldin, I. E. Vnukov, B. N. Kalinin, et al. J. Surf. Invest.: X-Ray Synchrotron Neutron Tech., No. 4, 72 (2006).

  21. Yu. A. Goponov, M. A. Sidnin, I. E. Vnukov, et al., Nucl. Instrum. Methods Phys. Res. 402, 83 (2017).

    Article  Google Scholar 

  22. Y. Takabayashi and A. V. Shchagin, Nucl. Instrum. Methods Phys. Res. 272, 78 (2012).

    Article  Google Scholar 

  23. Y. Takabayashi, K. B. Korotchenko, Yu. V. Pivovarov, et al., Nucl. Instrum. Methods Phys. Res. 202, 79 (2017).

    Article  Google Scholar 

  24. Camera. Ray, http://www.proxivision.de/datasheets/ X-Ray-Camera- HR25-x-ray-PR-0055E-03.pdf

  25. A. L. Meadowcroft, C. D. Bentley, and E. N. Stott, Rev. Sci. Instrum. 78, 113102 (2008).

    Article  Google Scholar 

  26. P. Leblans, D. Vandenbroucke, and P. Willems, Materials 4, 1034 (2011).

    Article  Google Scholar 

  27. Yu. A. Goponov, S. A. Laktionova, O. O. Pligina, et al., Nucl. Instrum. Methods Phys. Res. 355, 150 (2015).

    Article  Google Scholar 

  28. A. A. Babaev and A. S. Gogolev, J. Phys.: Conf. Ser 732, 012030 (2016).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported in part by the Japan Society for the Promotion of Science KAKENHI, project no. JP17K05483.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Vnukov.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vnukov, I.E., Goponov, Y.A., Sidnin, M.A. et al. Measuring the Transverse Sizes of an Electron Beam by the Angular Distribution of the Coherent Radiation of Electrons in a Crystal. J. Surf. Investig. 13, 515–524 (2019). https://doi.org/10.1134/S1027451019030340

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019030340

Keywords:

Navigation