Advertisement

Neutron Diffraction and Spectrometry at the RADEX Pulsed Neutron Source of the Institute for Nuclear Research, Russian Academy of Sciences

  • V. S. LitvinEmail author
  • A. A. Alekseev
  • D. N. Trunov
  • S. N. Aksenov
  • E. S. Clementyev
  • V. N. Marin
  • S. I. Potashev
  • A. A. Stolyarov
  • Yu. B. Lebed
  • V. L. Kuznetsov
  • S. P. Kuznetsov
  • I. V. Meshkov
  • R. A. Sadykov
Article
  • 27 Downloads

Abstract

The RADEX pulsed neutron source based on a linear proton accelerator at the Institute for Nuclear Research, the Russian Academy of Sciences, has one vertical channel with a 4-m path length and three horizontal channels with path lengths of approximately 10, 20, 30, and 50 m. The source is characterized by an unconventional configuration: the target and the water moderator are located perpendicularly to the proton beam; as a result, the neutron spectrum is enriched with epithermal and cascade neutrons. Using the source, investigations in the fields of nuclear physics, condensed-matter physics and nanostructures can be performed. The results obtained using various path lengths of horizontal channels of the RADEX neutron source are presented. Test measurements are conducted and direct beam spectra for the horizontal neutron channels and neutron diffraction patterns of test samples are obtained. The resolution for different path lengths of the neutron source is determined. The possibility of performing phase analysis is demonstrated.

Keywords:

pulsed neutron source epithermal neutrons neutron diffraction 

Notes

ACKNOWLEDGMENTS

This work was carried out using equipment common use center of the Accelerator Center for Neutron Studies of Matter Structure and Nuclear Medicine, Institute for Nuclear Research, Russian Academy of Sciences(unique identifier of the works RFMEFI62117X0014).

REFERENCES

  1. 1.
    T. R. Sosnick, W. M. Snow, and P. E. Sokol, Phys. Rev. B 41, 11185 (1990).  https://doi.org/10.1103/PhysRevB.41.11185 CrossRefGoogle Scholar
  2. 2.
    P. L. Anthony, R. G. Arnold, H. R. Band, et al., Phys. Rev. D 54, 6620 (1996).  https://doi.org/10.1103/PhysRevD.54.6620 CrossRefGoogle Scholar
  3. 3.
    G. Gorini, G. Festa, and C. Andreani, J. Phys.: Conf. Ser. 571, 012005 (2014).  https://doi.org/10.1088/1742-6596/571/1/012005 Google Scholar
  4. 4.
    K. Kuwahara, S. Sugiyama, K. Iwasa, et al., Appl. Phys. A: Mater. Sci. Process. 74 (1 Supple), s303 (2002).  https://doi.org/10.1007/s003390201399 CrossRefGoogle Scholar
  5. 5.
    Y. Ishikawa, N. Watanabe, K. Tajima, and H. Sekine, Phys. Lett. A 48, 159 (1974).  https://doi.org/10.1016/0375-9601(74)90522-2 CrossRefGoogle Scholar
  6. 6.
    A. A. Alekseev, R. A. Sadykov, V. S. Litvin, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (2), 215 (2015).  https://doi.org/10.1134/S1027451014060202 CrossRefGoogle Scholar
  7. 7.
    Yu. V. Ryabov, M. I. Grachev, D. V. Kamanin, et al., Phys. Solid State 52 (5), 1021 (2010).CrossRefGoogle Scholar
  8. 8.
    A. A. Alekseev, A. A. Bergman, A. I. Berlev, et al., Preprint No. 1325/2012, IYaI RAN (Institute for Nuclear Research Russ. Acad. Sci., Moscow, 2012).Google Scholar
  9. 9.
    E. S. Konobeevski, S. V. Zuyev, M. V. Mordovskoy, et al., Phys. At. Nucl. 76 (11), 1398 (2013).  https://doi.org/10.1134/S1063778813110100 CrossRefGoogle Scholar
  10. 10.
    S. P. Kuznetsov, I. V. Meshkov, R. A. Sadykov, et al., Bull. Lebedev Phys. Inst. 40 (9), 245 (2013).CrossRefGoogle Scholar
  11. 11.
    V. N. Marin, R. A. Sadykov, D. N. Trunov, et al., Instrum. Exp. Tech. 61 (1), 1 (2018).  https://doi.org/10.1134/S0020441218010074 CrossRefGoogle Scholar
  12. 12.
    V. N. Marin, S. I. Potashev, D. N. Trunov, et al., Instrum. Exp. Tech. 57 (6), 684 (2014). Google Scholar
  13. 13.
    J. Rodriguez-Carvajal, Comm. Powder Diffr. Newsl. IUCr 26, 12 (2001). doi 10.1134/S0020441214050169Google Scholar
  14. 14.
    V. A. Petrov, V. F. Sukhovarov, and R. D. Stokratov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 8, 110 (1983).Google Scholar
  15. 15.
    V. A. Petrov, V. F. Sukhovarov, and R. D. Stokratov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 24 (1984).Google Scholar
  16. 16.
    V. A. Petrov, V. F. Sukhovarov, and R. D. Stokratov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 9, 104 (1984).Google Scholar
  17. 17.
    V. A. Petrov, L. I. Vershinina, V. F. Sukhovarov, and R. D. Stokratov, Fiz. Met. Metalloved. 57 (1), 127 (1984).Google Scholar
  18. 18.
    V. A. Petrov, V. F. Sukhovarov, and R. D. Stokratov, Fiz. Met. Metalloved. 56 (1), 72 (1983).Google Scholar
  19. 19.
    S. P. Kuznetsov, V. S. Litvin, V. N. Marin, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12 (3), 419 (2018).  https://doi.org/10.1134/S1027451018030102 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. S. Litvin
    • 1
    • 2
    Email author
  • A. A. Alekseev
    • 1
  • D. N. Trunov
    • 1
  • S. N. Aksenov
    • 1
  • E. S. Clementyev
    • 1
    • 3
  • V. N. Marin
    • 1
  • S. I. Potashev
    • 1
  • A. A. Stolyarov
    • 1
  • Yu. B. Lebed
    • 1
  • V. L. Kuznetsov
    • 1
  • S. P. Kuznetsov
    • 2
  • I. V. Meshkov
    • 2
  • R. A. Sadykov
    • 1
  1. 1.Institute for Nuclear Research, Russian Academy of SciencesMoscowRussia
  2. 2.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia
  3. 3.Immanuel Kant Baltic Federal UniversityKaliningradRussia

Personalised recommendations