Advertisement

Influence of a Carbon-Modified Surface on the Field-Emission Properties of Silicon Crystals

  • R. K. Yafarov
  • A. V. Smirnov
  • A. R. Yafarov
Article

Abstract

Multi-point cathode matrices, the surface density of which is 107–109 cm–2 and the maximum field-emission current density is 1.5–2 orders of magnitude higher than that obtained on silicon crystals with the help of traditional microelectronic technologies, are fabricated using the self-organization phenomenon during the microwave plasma deposition of submonolayer carbon mask films onto silicon (100) crystals with a natural oxide coating and highly anisotropic plasma-chemical etching. The mechanism whereby mask carbon coatings are formed is discussed, and the optimal duration of the formation processes is determined. The interdependence between the surface morphology and field-emission properties is described in the scope of the Fowler‒Nordheim theory taking into account microstructural changes in the surface phases of silicon asperities.

Keywords

field emission of electrons silicon surface modification carbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Gerasimenko and Yu. N. Parkhomenko, Silicon is Material for Nano-Electronics (Tekhnosfera, Moscow, 2007) [in Russian].Google Scholar
  2. 2.
    L. F. Velásquez-García, S. Guerrera, Y. Niu, and A. I. Akinwande, IEEE Trans. Electron Devices 58, 1783 (2011). doi 10.1109/TED.2011.2128323CrossRefGoogle Scholar
  3. 3.
    F. Zhao, J. Deng, D. Zhao, et al., J. Nanosci. Nanotechnol. 10, 1 (2010). doi 10.1166/jnn.2010.2753CrossRefGoogle Scholar
  4. 4.
    K. Betsui, in Proc. 4th Int. Vacuum Microelectronics Conference (Nagahama, 1991), p. 26.Google Scholar
  5. 5.
    N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, et al., Fiz. Tekh. Poluprovodn. (S.-Peterburg) 32 (4), 385 (1998).Google Scholar
  6. 6.
    R. K. Yafarov and V. Ya. Shanygin, Semiconductors 51 (4), 531 (2017).CrossRefGoogle Scholar
  7. 7.
    R. K. Yafarov, Physics of Microwave Vacuum Plasma Nanotechnologies (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar
  8. 8.
    E. I. Givargizov, V. V. Zhirnov, A. N. Stepanova, and L. N. Obolenskaya, RF Patent No. 2074444 (1997).Google Scholar
  9. 9.
    D. V. Nefedov, V. Ya. Shanygin, S. Yu. Suzdal’tsev, and R. K. Yafarov, in Proc. Int. Scientific and Practical Conference “Topical Problems on Electronic Instrumental Manufacturing” (Saratov, 2016), Vol. 2, p. 469.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • R. K. Yafarov
    • 1
  • A. V. Smirnov
    • 1
    • 2
    • 3
  • A. R. Yafarov
    • 1
  1. 1.Kotel’nikov Institute of Radio Engineering and Electronics (Saratov Branch)Russian Academy of SciencesSaratovRussia
  2. 2.Kotel’nikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia
  3. 3.Chernyshevsky Saratov State UniversitySaratovRussia

Personalised recommendations