Advertisement

Investigation of the Effect of Electron-Beam Irradiation on the Defect Structure of Laterally Overgrown GaN Films via the Induced-Current and Cathodoluminescence Methods

  • P. S. Vergeles
  • E. B. Yakimov
Article
  • 11 Downloads

Abstract

The low-energy electron irradiation effect on the defect structure on epitaxial laterally overgrown (ELOG) films and thick GaN crystals grown via the hydride epitaxy method is studied using a scanning electron microscope by the induced-current and cathodoluminescence methods. Electron-beam irradiation is carried out at room temperature. In this case, the electron-beam irradiation effect on dislocation segments located in the basal plane is studied in ELOG GaN films. At the same time, dislocations are introduced into GaN crystals by indentation at room temperature. It is found that the behavior of growth dislocations and those introduced by indentation is different under electron-beam irradiation.

Keywords

induced current cathodoluminescence GaN electron-beam irradiation dislocation glide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Liliental-Weber and D. Chern, J. Appl. Phys. 89, 7833 (2001). doi 10.1063/1.1370366CrossRefGoogle Scholar
  2. 2.
    K. Maeda, K. Suzuki, M. Ichihara, et al., Phys. B (Amsterdam, Neth.) 273–274, 134 (1999). doi 10.1016/S0921-4526(99)00424-XGoogle Scholar
  3. 3.
    S. Tomiya, S. Goto, M. Takeya, et al., Phys. Status Solidi A 200, 139 (2003). doi 10.1002/pssa.200303322CrossRefGoogle Scholar
  4. 4.
    E. B. Yakimov, P. S. Vergeles, A. Y. Polyakov, et al., Appl. Phys. Lett. 106, 132101 (2015). doi 10.1063/1.4916632CrossRefGoogle Scholar
  5. 5.
    E. B. Yakimov, P. S. Vergeles, A. Y. Polyakov, et al., Jpn. J. Appl. Phys. 55 (5), 05fm03 (2016). doi 10.7567/jjap.55.05fm03Google Scholar
  6. 6.
    E. B. Yakimov and P. S. Vergeles, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10 (5), 959 (2016). doi 10.1134/S1027451016050177CrossRefGoogle Scholar
  7. 7.
    J. Huang, K. Xu, X. J. Gong, et al., Appl. Phys. Lett. 98, 221906. doi 10.1063/1.3593381Google Scholar
  8. 8.
    M. Albrecht, H. P. Strunk, J. L. Weyher, et al., J. Appl. Phys 92 (4), 2000 (2002). doi 10.1063/1.1490618CrossRefGoogle Scholar
  9. 9.
    M. Albrecht, J. L. Weyher, B. Lucznik, et al., Appl. Phys. Lett. 92, 231909 (2008). doi 10.1063/1.2928226CrossRefGoogle Scholar
  10. 10.
    J. Huang, K. Xu, Y. M. Fan, et al., Nanoscale Res. Lett. 9 (1), 649 (2014). doi 10.1186/1556-276X-9-649CrossRefGoogle Scholar
  11. 11.
    O. S. Medvedev, O. F. Vyvenko, and A. S. Bondarenko, Semiconductors 49 (9), 1181 (2015). doi 10.1134/S1063782615090213CrossRefGoogle Scholar
  12. 12.
    O. S. Medvedev, O. F. Vyvenko, A. S. Bondarenko, et al., AIP Conf. Proc. 1748, 020011 (2016). doi 10.1063/1.4954345CrossRefGoogle Scholar
  13. 13.
    O. S. Medvedev, O. F. Vyvenko, and A. S. Bondarenko, J. Phys.: Conf. Ser. 690, 012008 (2016). doi 10.1088/1742-6596/690/1/012008Google Scholar
  14. 14.
    O. S. Medvedev, O. F. Vyvenko, and A. S. Bondarenko, Phys. Status Solidi C 14 (7), 1700111 (2017). doi 10.1002/pssc.201700111Google Scholar
  15. 15.
    E. B. Yakimov, J. Phys.: Condens. Matter 14, 13069 (2002). doi 10.1088/0953-8984/14/48/352Google Scholar
  16. 16.
    N. M. Shmidt, O. A. Soltanovich, A. S. Usikov, et al., J. Phys.: Condens. Matter 14, 13285 (2002). doi 10.1088/0953-8984/14/48/379Google Scholar
  17. 17.
    N. M. Shmidt, V. V. Sirotkin, A. A. Sitnikova, et al., Phys. Status Solidi C 2 (6), 1797 (2005). doi 10.1002/pssc.200460506CrossRefGoogle Scholar
  18. 18.
    P. S. Vergeles and E. B. Yakimov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 3, 58 (2009). doi 10.1134/S1027451009010108CrossRefGoogle Scholar
  19. 19.
    P. S. Vergeles, A. V. Govorkov, A. Y. Polyakov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2 (5), 688 (2008). doi 10.1134/S1027451008050030CrossRefGoogle Scholar
  20. 20.
    E. B. Yakimov, P. S. Vergeles, A. V. Govorkov, et al., Superlattices Microstruct. 45 (4–5), 308 (2009). doi 10.1016/j.spmi.2008.09.008CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Microelectronics Technology and High Purity MaterialsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.National University of Science and Technology MISISMoscowRussia

Personalised recommendations