Advertisement

Maskless X-Ray Lithography Based on Microoptical Electromechanical Systems and Microfocus X-Ray Tubes

  • N. N. Salashchenko
  • N. I. Chkhalo
  • N. A. Dyuzhev
Article
  • 10 Downloads

Abstract

The main advantages and problems of maskless X-ray lithography (MXRL) are discussed. Consideration is given to two concepts of lithography in which the chip of a microoptical electromechanical system (MOEMS) of micromirrors and a microfocus X-ray tube chip with a “breakthrough” thin-film target are used as dynamic masks. Each of them can occupy its own niche in a research area or in the mass production of microchips. A description of the project of a MXRL facility (demonstrator of technologies), which is based on the concept of MOEMS, developed at the Institute for Physics of Microstructures, Russian Academy of Sciences, is presented for the first time.

Keywords

maskless lithography microoptical electromechanical system laser-produced plasma field-emission nanocathodes X-ray optics multilayer mirrors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Jones, TSMC’s 10 nm Process Offers the Highest Transistor Density. 2018. https://doi.org/seekingalpha.com/article/4151376-tsmc-intel-lead-semiconductor-processes.Google Scholar
  2. 2.
    S.-S. Kim, R. Chalykh, H. Kim, et al., Proc. SPIE 10143, 1014306 (2017). doi 10.1117/12.2264043CrossRefGoogle Scholar
  3. 3.
    R. Menon, A. Patel, D. Gil, and H. I. Smith, Mater. Today 8 (2), 26 (2005).CrossRefGoogle Scholar
  4. 4.
    G. V. Belokopytov and Yu. V. Ryzhikova, Russ. Microelectron. 40 (6), 414 (2011).CrossRefGoogle Scholar
  5. 5.
  6. 6.
    I. Servin, N. A. Thiam, P. Pimenta-Barros, et al., Proc. SPIE 9423, 94231C (2015).Google Scholar
  7. 7.
    N. Choksi, D. S. Pickard, M. McCord, et al., J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 17, 3047 (1999).CrossRefGoogle Scholar
  8. 8.
    R. Menon, A. Patel, and H. I. Smith, Proc. SPIE 5721, 53 (2005).CrossRefGoogle Scholar
  9. 9.
    N. I. Chkhalo, V. N. Polkovnikov, N. N. Salashchenko, and M. N. Toropov, Proc. SPIE 10224, 102241O1 (2016).Google Scholar
  10. 10.
    Y. A. Shroff, Y. Chen, and W. G. Oldham, Proc. SPIE 5374, 637 (2004).CrossRefGoogle Scholar
  11. 11.
    Y. Chen and Y. Shroff, Proc. SPIE 6151, 61512D (2006).Google Scholar
  12. 12.
    Y. Chen, Proc. SPIE 8323, 83231Q1 (2012).Google Scholar
  13. 13.
    K. C. Johnson, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 30, 051606 (2012). doi 10.1116/1.4752112Google Scholar
  14. 14.
    N. Chkhalo, V. Polkovnikov, N. Salashchenko, and M. Toropov, J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 35, 062002 (2017). doi 10.1116/1.4995369Google Scholar
  15. 15.
    D. G. Volgunov, I. G. Zabrodin, B. A. Zakalov, et al., Bull. Russ. Acad. Sci.: Phys. 75 (1), 49 (2011).CrossRefGoogle Scholar
  16. 16.
    N. I. Chkhalo and N. N. Salashchenko, AIP Adv. 3 (8), 082130 (2013).CrossRefGoogle Scholar
  17. 17.
  18. 18.
    U. Dauderstädt, P. Askebjer, P. Björnängen, et al., Proc. SPIE 7208, 720804 (2009). doi 10.1117/12.810787CrossRefGoogle Scholar
  19. 19.
    N. I. Chkhalo, I. V. Malyshev, A. E. Pestov, et al., Appl. Opt. 55 (3), 619 (2016).CrossRefGoogle Scholar
  20. 20.
    N. I. Chkhalo, S. A. Churin, M. S. Mikhaylenko, et al., Appl. Opt. 55 (6), 1249 (2016).CrossRefGoogle Scholar
  21. 21.
    N. I. Chkhalo, I. A. Kaskov, I. V. Malyshev, et al., Precis. Eng. 48, 338 (2017). http://dx.doi.org/10.1016/j.precisioneng.2017.01.004CrossRefGoogle Scholar
  22. 22.
    H. Mizoguchi, H. Nakarai, T. Abe, et al., Proc. SPIE 10450, 104500Z (2017). doi 10.1117/12.2281129Google Scholar
  23. 23.
    U. Stamm, I. Ahmad, I. Balogh, et al., Proc. SPIE 5037, 119 (2003).CrossRefGoogle Scholar
  24. 24.
    O. Wood, J. Arnold, T. Brunner, et al., Proc. SPIE 8322, 832203 (2012).CrossRefGoogle Scholar
  25. 25.
    S. A. Bulgakova, M. M. Jons, A. E. Pestov, et al., Russ. Microelectron. 42 (3), 165 (2013).CrossRefGoogle Scholar
  26. 26.
    N. A. Dyuzhev, G. D. Demin, T. A. Gryazneva, et al., Bull. Lebedev Phys. Inst. 45 (1), 1 (2018).CrossRefGoogle Scholar
  27. 27.
  28. 28.
    A. Basu, M. E. Swanwick, A. A. Fomani, and L. F. Velasquez-Garcia, J. Phys. D: Appl. Phys. 48, 225501 (2015).CrossRefGoogle Scholar
  29. 29.
    A. A. Kochetkov, A. E. Pestov, A. Ya. Lopatin, et al., in Proc. 22nd Int. Symposium “Nanophysics and Nanoelectronics” (Nizhny Novgorod, 2018), Vol. 1, p. 452.Google Scholar
  30. 30.
    T. Otsuka, B. Li, C. O’Gorman, et al., Proc. SPIE 8322, 832214 (2012).CrossRefGoogle Scholar
  31. 31.
    M. O. Krause, J. Phys. Chem. Ref. Data 8, 307 (1979).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. N. Salashchenko
    • 1
  • N. I. Chkhalo
    • 1
  • N. A. Dyuzhev
    • 2
  1. 1.Institute for Physics of MicrostructuresRussian Academy of SciencesNizhny NovgorodRussia
  2. 2.National Research University of Electronic Technology MIETMoscowRussia

Personalised recommendations