Advertisement

Physicochemical Processes in the Synthesis of New Detectors of X-Ray Radiation Based on YAG:Ce-Halide Fluxes

  • A. V. Vishnyakov
  • E. A. Vishnyakova
  • T. Yu. Kiseleva
  • I. V. Ivanov
Article
  • 3 Downloads

Abstract

Using the data of X-ray phase analysis, optical spectroscopy, and scanning electron microscopy of YAG:Ce luminophores, the main types of interactions in complex systems formed by a light-emitting diode luminophore and halide fluxing agents are determined, which cause intense luminescence in the ultraviolet region.

Keywords

luminophores YAG:Ce UV luminescence halide fluxes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Blasse and A. Bril, Appl. Phys. Lett. 11, 53 (1967).CrossRefGoogle Scholar
  2. 2.
    S. Nishiura, S. Tanabe, K. Fujioka, and Y. Fujimoto, Opt. Mater. 33 (5), 688 (2011).CrossRefGoogle Scholar
  3. 3.
    P. Schlotter, R. Schmidt, and J. Schneider, Appl. Phys. A: Mater. Sci. Process. 64 (4), 417 (1997).CrossRefGoogle Scholar
  4. 4.
    A. Aboulaich, J. Deschamps, R. Deloncle, et al., New J. Chem. 36, 2493 (2012).CrossRefGoogle Scholar
  5. 5.
    Y. H. Song, G. S. Han, E. K. Ji, et al., J. Mater. Chem. C 3, 6148 (2015).CrossRefGoogle Scholar
  6. 6.
    M. L. S. Paulo, S. V. James, A. C. Brent, et al., US Patent No. 7608829 (2009).Google Scholar
  7. 7.
    I. Kandarakis, D. Cavouras, I. Sianoudis, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 538, 615 (2005).CrossRefGoogle Scholar
  8. 8.
    R. Hull, B. Jacquier, G. Liu, et al., Spectroscopic Properties of Rare Earths in Optical Materials (Tsinghua Univ. Press and Springer, Berlin, Heidelberg, 2005).CrossRefGoogle Scholar
  9. 9.
    S. L. David, C. M. Michail, I. G. Valais, et al., e-J. Sci. Technol. 2, 63 (2010).Google Scholar
  10. 10.
    V. Sipala, N. Randazzo, S. Aiello, et al., J. Instrum. 10 (3), C03014 (2015).Google Scholar
  11. 11.
    J. Tous, M. Horvath, L. Pına, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 591, 264 (2008).CrossRefGoogle Scholar
  12. 12.
    A. V. Vishnyakov, E. A. Vishnyakova, Y. Chang, et al., Tech. Phys. Lett. 40, 448 (2014).CrossRefGoogle Scholar
  13. 13.
    A. H. Shulz, B. Bieker, and J. Kroch-Moe, Acta Chem. Scand. 26, 2623 (1972).CrossRefGoogle Scholar
  14. 14.
    C. Chiang, T. Liu, H. Lin, et al., J. Appl. Phys. 114, 243517–1 (2013).Google Scholar
  15. 15.
    S. H. Lee, D. S. Jung, J. M. Han, et al., J. Alloys Compd. 477, 776 (2009).CrossRefGoogle Scholar
  16. 16.
    S. H. Lee, H. Y. Koo, D. S. Jung, et al., Opt. Mater. 31, 870 (2009).CrossRefGoogle Scholar
  17. 17.
    H. I. Won, H. H. Nersisyan, C. W. Won, and K. H. Lee, Mater. Chem. Phys. 129, 955 (2011).CrossRefGoogle Scholar
  18. 18.
    K. Ohno and T. Abe, J. Electrochem. Soc. 141, 1252 (1994).CrossRefGoogle Scholar
  19. 19.
    A. Roine, Outokumpu HSC Chemistry for Windows. Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database (Outokumpu Research OY, Pori, 2002).Google Scholar
  20. 20.
    C. W. Won, H. H. Nersisyan, H. I. Won, et al., J. Alloys Compd. 509, 2621 (2011).CrossRefGoogle Scholar
  21. 21.
    H. Hagemann, V. D’Anna, D. M. Lawson, and F. Kubel, Cryst. Growth Des. 12, 1124 (2012).CrossRefGoogle Scholar
  22. 22.
    D. J. Robbins, B. Cockayne, J. L. Glasper, and B. Lent, J. Electrochem. Soc. 126, 1213 (1979).CrossRefGoogle Scholar
  23. 23.
    S. R. Rotman, H. L. Tuller, and C. Warde, J. Appl. Phys. 71, 1209 (1992).CrossRefGoogle Scholar
  24. 24.
    V. Pankratov, L. Grigorjeva, D. Millers, and T. Chudoba, Radiat. Meas. 42, 679 (2007).CrossRefGoogle Scholar
  25. 25.
    W. Drozdowski and A. J. Wojtowicz, Nucl. Instrum. Methods Phys. Res., Sect. A 486, 412 (2002).CrossRefGoogle Scholar
  26. 26.
    C. L. Melcher, R. A. Manente, and J. S. Schweitzer, IEEE Trans. Nucl. Sci. 36 (1), 1188 (1989).CrossRefGoogle Scholar
  27. 27.
    R. Visser, P. Dorenbos, C. W. E. van Eijk, and R. W. Hollander, IEEE Trans. Nucl. Sci. 38 (2), 178 (1991).CrossRefGoogle Scholar
  28. 28.
    A. V. Vishnyakov, E. A. Vishnyakova, T. Yu. Kiseleva, and I. V. Ivanov, Mendeleev Commun. 25, 299 (2015).CrossRefGoogle Scholar
  29. 29.
    Japanese Industrial Standard, Standard Illuminants and Source for Colorimetry, JIS Z 8720 (2003).Google Scholar
  30. 30.
    C. Peng, C. Li, G. Li, et al., Dalton Trans. 41, 8660 (2012).CrossRefGoogle Scholar
  31. 31.
    X. Wang, T. Sheng, Z. Fu, et al., Mater. Res. Bull. 48, 2143 (2013).CrossRefGoogle Scholar
  32. 32.
    J. Selling, S. Schweizer, M. D. Birowosuto, and P. Dorenbos, J. Appl. Phys. 102, 074915–1 (2007).Google Scholar
  33. 33.
    J. Selling, G. Corradi, M. Secu, and S. Schweizer, J. Phys.: Condens. Matter 17, 8069 (2005).Google Scholar
  34. 34.
    W.-M. Li and M. Leskela, Mater. Lett. 28, 491 (1996).CrossRefGoogle Scholar
  35. 35.
    S. Mian-zeng and L. Chun-sheng, Cryst. Chem. J. Chin. Univ. 11 (12), 1331 (1990).Google Scholar
  36. 36.
    T. Sheng, Z. Fu, J. Wang, et al., RSC Adv. 2, 4697 (2012).CrossRefGoogle Scholar
  37. 37.
    Y. Huang, H. You, G. Jia, et al., J. Phys. Chem. C 114 (42), 18051 (2010).CrossRefGoogle Scholar
  38. 38.
    J. C. Van’t Spijker, P. Dorenbos, C. W. E. van Eijk, et al., J. Lumin. 85 (1–3), 11 (1999).CrossRefGoogle Scholar
  39. 39.
    Z. L. Wang, Z. W. Quan, P. Y. Jia, C. K. Lin, et al., J. Chem. Mater. 18, 2030 (2006).CrossRefGoogle Scholar
  40. 40.
    H. Lian, M. Zhang, J. Liu, et al., Chem. Phys. Lett. 395, 362 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Vishnyakov
    • 1
  • E. A. Vishnyakova
    • 2
  • T. Yu. Kiseleva
    • 3
  • I. V. Ivanov
    • 1
  1. 1.Mendeleev University of Chemical Technology of RussiaMoscowRussia
  2. 2.International Scientific-Educational Laser CenterMoscow State UniversityMoscowRussia
  3. 3.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations