Polarization-Field Influence on Light-Ion Channeling in Carbon Nanotubes

  • A. S. SabirovEmail author


The polarization potential of the interaction between fast charged particles and multilayer-nanotube walls, which arises due to the excitation of surface modes of electromagnetic oscillations, is estimated. A nanotube is interpreted as a set of concentric cylindrical layers with specified dielectric properties. Formulas for calculating the polarization-field potential are derived as applied to a charged particle moving parallel to the multilayer nanotube axis. Numerical calculations are performed in the single-mode approximation of a dielectric function. The polarization forces arising in a multilayer nanotube are compared with those corresponding to the single-layer one. It is demonstrated that, under certain conditions, existing external layers can sufficiently affect the polarization forces acting on charged-particle channeling in a nanotube. At the same time, model calculations indicate that outer layers exert an insignificant influence on the polarization losses of the channeling-particle energy.


nanotubes channeling plasmons polarization potential energy losses 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Borka, S. Petrovic, N. Neškovic, D. J. Mowbray, and Z. L. Miškovic, Phys. Rev. A 73, 062902 (2006). doi 10.1103/PhysRevA.73.062902CrossRefGoogle Scholar
  2. 2.
    D. J. Mowbray, Z. L. Miškovic, F. O. Goodman, and Wang Yiu-Nian, Phys. Rev. B 70, 195418 (2004). doi 10.1103/PhysRevB.70.195418CrossRefGoogle Scholar
  3. 3.
    D. J. Mowbray, S. Segui, and J. Gervasoni, Phys. Rev. B 82, 035405 (2010). doi 10.1103/Phys.Rev.B.82.035405CrossRefGoogle Scholar
  4. 4.
    A. Moradi, Phys. Lett. A 372, 5614 (2008). doi 10.1016/j.physleta.2008.06.071CrossRefGoogle Scholar
  5. 5.
    L. Karbunar, D. Borka, I. Radovicr, and Z. L. Miškovicr, Nucl. Instrum. Methods Phys. Res., Sect. B 358, 82 (2015). doi 10.1016/j.nimb.2015.10.033CrossRefGoogle Scholar
  6. 6.
    Y. H. Tu, C. M. Kwei, Y. C. Li, and C. J. Tung, Phys. Rev. B 74, 045403 (2006). doi 10.1103/Phys.Rev.B.74.045403CrossRefGoogle Scholar
  7. 7.
    S. Segui, J. L. Gervasoni, and N. R. Arista, Radiat. Phys. Chem. 76, 582 (2007). doi 10.1016/j.radphyschem. 2005.10.050CrossRefGoogle Scholar
  8. 8.
    H. Khosravi, N. Daneshfar, and A. Bahari, Opt. Commun. 281, 5045 (2008). doi 10.1016/j.optcom. 2008.06.063CrossRefGoogle Scholar
  9. 9.
    A. S. Sabirov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8 (2), 297 (2014). doi 10.1134/S1027451014010169CrossRefGoogle Scholar
  10. 10.
    M. Z. Herrera and J. L. Gervasoni, Nucl. Instrum. Methods Phys. Res., Sect. B 267, 415(2009). doi 10.1016/j.nimb.2008.10.078CrossRefGoogle Scholar
  11. 11.
    O. Sato, Y. Tanaka, M. KobayLashi, and A. Hasegawa, Phys. Rev. B 48, 1947 (1993). doi 10.1103/Phys.Rev.B.48.1947CrossRefGoogle Scholar
  12. 12.
    G. Gumbs, A. Balassis, and P. Fekete, Phys. Rev. B 73, 075411 (2006). doi 10.1103/Phys.Rev.B.73.075411CrossRefGoogle Scholar
  13. 13.
    G. M. Filippov, Bull. Russ. Acad. Sci.: Phys. 76 (6), 678 (2012). doi 10.3103/S1062873812060159CrossRefGoogle Scholar
  14. 14.
    G. M. Filippov and A. S. Sabirov, Bull. Russ. Acad. Sci.: Phys. 78 (6), 478 (2014). doi 10.3103/S1062873814060124CrossRefGoogle Scholar
  15. 15.
    Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Ed. by M. Abramowitz and I. A. Stegun (Dover Publ., New York, 1965).Google Scholar
  16. 16.
    A. Bahari, A. R. Mohamadi, and N. Daneshfar, Opt. Commun. 285, 800 (2012). doi 10.1016/j.optcom. 2011.10.097CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ulyanov Chuvash State UniversityCheboksaryRussia

Personalised recommendations