Advertisement

Experience in the Development of a Configurable Laboratory UV Projection Photolithography System of Micron Resolution

  • P. A. ProkopovichEmail author
  • D. N. Frolov
  • V. N. Frolov
  • E. S. Klement’ev
  • A. I. Grunin
  • O. A. Dikaya
  • U. Yu. Koneva
  • G. G. Lyahov
  • D. D. Efimov
  • D. A. Serebrennikov
  • V. V. Molchanov
  • E. A. Severin
  • O. V. Toropova
  • A. Yu. Goikhman
Article
  • 27 Downloads

Abstract

The possibility of creating a laboratory UV photolithography setup with the help of commercially available components, such as optical-mechanical positioners and UV (ultraviolet) objective lenses, is discussed. Existing technical solutions concerning the optical systems of optical lithography, which rely on object‒image reduction, are considered. The main trends in the design of such systems based on lens optics are analyzed. The theoretical and practical aspects underlying the design of similar systems are examined taking into account the basic conditions of image obtainment: congruence to the initial object, ray-path telecentricity, and achievement of the required parameters by linear fields and resolution.

Keywords

UV photolithography optical systems objective lenses lens optics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. C. Love, et al., Langmuir 17 (19), 6005 (2001).CrossRefGoogle Scholar
  2. 2.
    M. D. Huntington, T. W. Odom, and A. Portable, Small 7 (22), 3144 (2011).CrossRefGoogle Scholar
  3. 3.
    M. J. Brady and A. Davidson, Rev. Sci. Instrum. 54 (10), 1292 (1983).CrossRefGoogle Scholar
  4. 4.
    J. M. Behm, et al., Langmuir 12 (8), 2121 (1996).CrossRefGoogle Scholar
  5. 5.
    Y. Suenaga, US Patent No. 6633365 (2003).Google Scholar
  6. 6.
    R. Hudyma, US Patent No. 6072852 (2000).Google Scholar
  7. 7.
    J. Zaumseil, et al., Nano Lett. 3 (9), 1223 (2003).CrossRefGoogle Scholar
  8. 8.
    J. R. Franco, J. Havas, and L. J. Rompala, US Patent No. 4004044 (1977).Google Scholar
  9. 9.
    G. M. Whitesides and B. Grzybowski, Science 295 (556), 2418 (2002).CrossRefGoogle Scholar
  10. 10.
    D. Qin, Y. Xia, and G. M. Whitesides, Nat. Protoc. 5 (3), 491 (2010).CrossRefGoogle Scholar
  11. 11.
    L. J. Guo, Adv. Mater. 19 (4), 495 (2007).CrossRefGoogle Scholar
  12. 12.
    M. M. Alkaisi, et al., Appl. Phys. Lett. 75 (22), 3560 (1999).CrossRefGoogle Scholar
  13. 13.
    Y. Qin, et al., Int. J. Adv. Manuf. Technol. 47 (9), 821 (2010).CrossRefGoogle Scholar
  14. 14.
    D. N. Frolov, Opt. Zh. 69 (9), 16 (2002).Google Scholar
  15. 15.
    N. B. Skobeleva, M. N. Sokol’skii, and L. E. Levandovskaya, Opt. Zh. 78 (1), 45 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. A. Prokopovich
    • 1
    Email author
  • D. N. Frolov
    • 2
  • V. N. Frolov
    • 3
  • E. S. Klement’ev
    • 1
  • A. I. Grunin
    • 1
  • O. A. Dikaya
    • 1
  • U. Yu. Koneva
    • 1
  • G. G. Lyahov
    • 1
  • D. D. Efimov
    • 1
  • D. A. Serebrennikov
    • 1
  • V. V. Molchanov
    • 1
  • E. A. Severin
    • 1
  • O. V. Toropova
    • 1
  • A. Yu. Goikhman
    • 1
  1. 1.Research and Education Center “Functional Nanomaterials”Immanuel Kant Baltic Federal UniversityKaliningradRussia
  2. 2.Project Labor-MicroscopesSt. PetersburgRussia
  3. 3.AO NPP “Air and Marine Electronics”St. PetersburgRussia

Personalised recommendations