Advertisement

Structural Aspects of Fe3O4/CoFe2O4 Magnetic Nanoparticles According to X-Ray and Neutron Scattering

  • A. V. Nagornyi
  • M. V. Avdeev
  • O. V. Yelenich
  • S. O. Solopan
  • A. G. Belous
  • A. V. Shulenina
  • V. A. Turchenko
  • D. V. Soloviov
  • L. A. Bulavin
  • V. L. Aksenov
Article
  • 1 Downloads

Abstract

Structural aspects of powders containing magnetic nanoparticles Fe3O4/CoFe2O4 with the anticipated “core-shell” structure are considered by means of comparative analysis with individual particles of Fe3O4, CoFe2O4 in accordance of data obtained from X-ray powder diffraction and small-angle scattering of X-ray (synchrotron) radiation and neutrons. It is shown that magnetic particles in the powders under study have a strong polydispersity and form complex aggregates. Characteristic sizes of the crystallites, as well as a ratio of magnetite to cobalt-ferrite in the composition of the Fe3O4/CoFe2O4 particles were evaluated from the analysis of the diffraction peaks. Аnalyzing the data on small-angle scattering, the dimensional characteristics of particles and aggregates, as well as the volume fraction of the last ones in the powders, have been obtained. Fractal dimensions of aggregates are determined. A significant difference is observed in the scattering on Fe3O4/CoFe2O4 particles and the total scattering consisting of partial contributions to scattering on individual magnetite (Fe3O4) and cobalt-ferrite (CoFe2O4) powders, which does not exclude the formation of the “core-shell” structure.

Keywords

small-angle neutron scattering small-angle X-ray (synchrotron) scattering powder diffraction magnetic nanoparticles “core–shell” structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. P. Gubin, Yu. A. Koksharov, G. B. Khomutov, et al., Russ. Chem. Rev. 74, 489 (2005).CrossRefGoogle Scholar
  2. 2.
    M. M. Rashadand and O. A. Fouad, Mater. Chem. Phys. 94, 365 (2005).CrossRefGoogle Scholar
  3. 3.
    L. Vekas, M. V. Avdeev, and D. Bica, in Nanoscience in Biomedicine, Ed. by D. Shi (Springer, Berlin, 2009), Chap. 25, p.650.Google Scholar
  4. 4.
    U. Hafeli and M. Zborowski, J. Magn. Magn. Mater. 321, 1335 (2009).CrossRefGoogle Scholar
  5. 5.
    B. E. Kashevsky, V. E. Agabekov, S. B. Kashevsky, et al., Particuology 6 (5), 322 (2008).CrossRefGoogle Scholar
  6. 6.
    B. L. Cushing, V. L. Kolesnichenko, and C. J. O’Connor, Chem. Rev. 104, 3893 (2004).CrossRefGoogle Scholar
  7. 7.
    C. Feldmann, Adv. Funct. Mater. 13, 101 (2003).CrossRefGoogle Scholar
  8. 8.
    D. Caruntu, Y. Remond, N. Chou, et al., Inorg. Chem. 41, 6137 (2002).CrossRefGoogle Scholar
  9. 9.
    G. Goloverda, B. Jackson, C. Kidd, et al., J. Magn. Magn. Mater. 321, 1372 (2009).CrossRefGoogle Scholar
  10. 10.
    J.-H. Lee, J. Jang, J. Choi, et al., Nat. Nanotechnol. 6, 418 (2011).CrossRefGoogle Scholar
  11. 11.
    X. Sun, N. F. Huls, A. Sigdel, et al., Nano Lett. 12, 246 (2012).CrossRefGoogle Scholar
  12. 12.
    A. Lopez-Ortega, M. Estrader, G. Salazar-Alvarez, et al., Phys. Rep. 553, 1 (2015).CrossRefGoogle Scholar
  13. 13.
    R. Skomski and J. M. D. Coey, Phys. Rev. B 48, 15812 (1993).CrossRefGoogle Scholar
  14. 14.
    O. V. Yelenich, S. O. Solopan, J. M. Greneche, et al., Solid State Sci. 46, 19 (2015).CrossRefGoogle Scholar
  15. 15.
    M. Balashoyu, M. V. Avdeev, and V. L. Aksenov, Crystallogr. Rep. 52, 505 (2007).CrossRefGoogle Scholar
  16. 16.
    V. L. Aksenov, M. V. Avdeev, A. V. Shulenina, et al., Crystallogr. Rep. 56 (5), 792 (2011).CrossRefGoogle Scholar
  17. 17.
    V. I. Petrenko, M. V. Avdeev, L. A. Bulavin, et al., Crystallogr. Rep. 61 (1), 121 (2016).CrossRefGoogle Scholar
  18. 18.
    O. V. Yelenich, S. O. Solopan, V. V. Trachevskii, et al., Russ. J. Inorg. Chem. 58, 901 (2013).CrossRefGoogle Scholar
  19. 19.
    A. I. Kuklin, D. V. Soloviov, A. V. Rogachev, et al., J. Phys.: Conf. Ser. 291 (1), 012013 (2011).Google Scholar
  20. 20.
    V. N. Korneev, V. A. Shlektarev, A. V. Zabelin, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2 (6), 872 (2008).CrossRefGoogle Scholar
  21. 21.
    A. P. Hammersley, FIT2D V9.129 Reference Manual, ESRF Internal Report, ESRF98HA01T V3.1. (1998).Google Scholar
  22. 22.
    P. V. Konarev, V. V. Volkov, A. V. Sokolova, et al., J. Appl. Crystallogr. 36, 1277 (2003).CrossRefGoogle Scholar
  23. 23.
    P. E. Tomaszewski, Phase Transitions 38 (3), 127 (1992).CrossRefGoogle Scholar
  24. 24.
    G. Beaucage, J. Appl. Crystallogr. 29, 134 (1996).CrossRefGoogle Scholar
  25. 25.
    O. V. Tomchuk, L. A. Bulavin, V. L. Aksenov, et al., J. Appl. Crystallogr. 47, 642 (2014).CrossRefGoogle Scholar
  26. 26.
    M. V. Avdeev, O. V. Tomchuk, O. I. Ivankov, et al., Chem. Phys. Lett. 658, 58 (2016).CrossRefGoogle Scholar
  27. 27.
    M. V. Avdeev and V. L. Aksenov, Usp. Fiz. Nauk 180, 1009 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Nagornyi
    • 1
    • 2
  • M. V. Avdeev
    • 1
    • 3
  • O. V. Yelenich
    • 4
  • S. O. Solopan
    • 4
  • A. G. Belous
    • 4
  • A. V. Shulenina
    • 3
    • 7
  • V. A. Turchenko
    • 1
  • D. V. Soloviov
    • 1
    • 5
    • 6
  • L. A. Bulavin
    • 2
    • 5
  • V. L. Aksenov
    • 1
    • 7
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Taras Shevchenko National University of KyivKyivUkraine
  3. 3.Moscow State UniversityMoscowRussia
  4. 4.Vernadskii Institute of General and Inorganic ChemistryUkrainian National Academy of SciencesKyivUkraine
  5. 5.Institute for Safety Problems of Nuclear Power PlantsUkrainian National Academy of SciencesKyivUkraine
  6. 6.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia
  7. 7.National Research Center “Kurchatov Institute,”MoscowRussia

Personalised recommendations