Advertisement

Construction of a Changed Potential of Interatomic Interaction in the Case of Temperature-Accelerated Dynamics Simulation

  • E. V. Duda
  • G. V. Kornich
Article
  • 3 Downloads

Abstract

The temperature-accelerated dynamic simulation technique based on an increase in the temperature of a system to intensify the thermally induced motion of its atoms enables the simulation of atomic systems over time periods inaccessible by means of classical molecular dynamics simulation. The technique of changing the interaction potential within the temperature-accelerated simulation proposed in this paper is aimed at compensating thermal expansion of the system when its temperature increases and to estimate the variations of the frequencies of normal modes of system vibrations. The presented examples of the simulation of two- and three-dimensional systems show that the proposed procedure of modification of the interatomic interaction potential enables one to estimate times of atomic-system transitions between states during temperature- accelerated simulation close to the data provided by classical molecular dynamics simulation. Additionally, modification of the interatomic interaction allows one to improve the accuracy of estimations of the transition probabilities at temperature-accelerated simulation, which increases the reliability of the description of nanoatomic-system evolution.

Keywords

temperature-accelerated dynamics molecular dynamics simulation interatomic interaction potential vacancy diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. R. Sorensen and A. F. Voter, J. Chem. Phys. 112 (21), 9599 (2000). doi 10.1063/1.481576CrossRefGoogle Scholar
  2. 2.
    A. F. Voter, J. Chem. Phys. 106 (11), 4665 (1997). doi 10.1063/1.481576CrossRefGoogle Scholar
  3. 3.
    A. F. Voter, Phys. Rev. Lett. 78 (20), 3908 (1997). https://doi.org/10.1103/PhysRevLett.78.3908. doi 10.1063/1.481576CrossRefGoogle Scholar
  4. 4.
    A. F. Voter, Phys. Rev. B 57 (22), 985 (1998). doi 10.1103/PhysRevB.57.R13985CrossRefGoogle Scholar
  5. 5.
    D. Perez, B. P. Uberuaga, and A. F. Voter, Comput. Mater. Sci. 100, 90 (2015). doi 10.1016/j.commatsci. 2014.12.011CrossRefGoogle Scholar
  6. 6.
    M. Hong, J. L. Wohlwend, R. K. Behera, S. R. Phillpot, S. B. Sinnott, and B. P. Uberuaga, Surf. Sci. 617, 237 (2013). doi 10.1016/j.susc.2013.08.002CrossRefGoogle Scholar
  7. 7.
    V. Georgieva, A. F. Voter, and A. Bogaerts, Cryst. Growth Des. 11 (6), 2553 (2011). doi 10.1021/cg200318hCrossRefGoogle Scholar
  8. 8.
    F. Montalenti and A. F. Voter, Phys. Status Solidi B 226 (1), 21 (2001). doi 10.1002/1521-3951(200107)226:1<21::AIDPSSB21>3.0.CO;2-QCrossRefGoogle Scholar
  9. 9.
    E. V. Duda and G. V. Kornich, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10 (3), 570 (2016). doi 10.1134/S1027451016030216CrossRefGoogle Scholar
  10. 10.
    D. Hamelberg, J. Mongan, and J. A. McCammon, J. Chem. Phys. 120 (24), 11919 (2004). doi 10.1063/1.1755656CrossRefGoogle Scholar
  11. 11.
    C. F. Abrams and E. Vanden-Eijnden, Proc. Natl. Acad. Sci. U. S. A. 107 (11), 4961 (2010). doi 10.1073/pnas.0914540107CrossRefGoogle Scholar
  12. 12.
    P. R. L. Markwick and J. A. McCammon, Phys. Chem. Chem. Phys. 13 (45), 20053 (2011). doi 10.1039/C1CP22100KCrossRefGoogle Scholar
  13. 13.
    C. Ratsch and J. A. Venables, J. Vac. Sci. Technol., A 21, 96 (2003). doi 10.1116/1.1600454CrossRefGoogle Scholar
  14. 14.
    F. V. Grigor’ev, I. V. Kochikov, O. A. Kondakova, V. B. Sulimov, and A. V. Tikhonravov, Vychisl. Metody Program. 14 (1), 323 (2013).Google Scholar
  15. 15.
    V. G. Dubrovskii, Theory of Epitaxial Nanostructures Formation (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar
  16. 16.
    A. I. Bazhin, A. A. Goncharov, V. A. Konovalov, G. V. Kornich, V. I. Kiprich, V. A. Stupak, and A. E. Pokintelitsa, Vestn. Donetsk. Nats. Univ., Ser. A: Estestv. Nauki, No. 1, 40 (2011).Google Scholar
  17. 17.
    V. I. Kiprich, G. V. Kornich, A. I. Bazhin, and I. P. Soshnikov, Poverkhnost, No. 6, 22 (2010).Google Scholar
  18. 18.
    B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, and B. Aufray, Appl. Phys. Lett. 97 (22), 223109 (2010). doi 10.1063/1.3524215CrossRefGoogle Scholar
  19. 19.
    M. E. Davila, L. Xian, S. Cahangirov, A. Rubio, and G. Le Lay, New J. Phys. 16 (2014). doi 10.1088/1367-2630/16/9/095002Google Scholar
  20. 20.
    G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957). doi 10.1016/0022-3697(57)90059-8CrossRefGoogle Scholar
  21. 21.
    P. M. Morse, Phys. Rev. 34, 57 (1929). doi 10.1103/PhysRev.34.57CrossRefGoogle Scholar
  22. 22.
    L. A. Girifalco and V. G. Weizer, Phys. Rev. 114 (3), 687 (1959). doi 10.1103/PhysRev.114.687CrossRefGoogle Scholar
  23. 23.
    J. F. Zigler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar
  24. 24.
    H. J. Berendsen, J. P. M. Postma, W. F. V. Gunsteren, A. Di-Nola, and J. R. Haak, J. Chem. Phys. 81 (8), 3684 (1984). doi 10.1063/1.448118CrossRefGoogle Scholar
  25. 25.
    G. Henkelman and H. Jonsson, J. Chem. Phys. 113 (22), 9978 (2000). doi 10.1063/1.1323224CrossRefGoogle Scholar
  26. 26.
    F. Gao, B. Bacon, and G. Ackland, Philos. Mag. A 67 (2), 275 (1993). doi 10.1080/01418619308207158CrossRefGoogle Scholar
  27. 27.
    G. J. Ackland, C. Tichy, V. Vitek, and M. W. Finnis, Philos. Mag. A 56 (6), 735 (1987). doi 10.1080/01418618708204485CrossRefGoogle Scholar
  28. 28.
    Vl. V. Voevodin, S. A. Zhumatii, S. I. Sobolev, A. S. Antonov, P. A. Bryzgalov, D. A. Nikitenko, K. S. Stefanov, and Vad. V. Voevodin, Otkrytye Sist. SUBD, No. 7, 36 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Zaporizhzhya National Technical UniversityZaporizhzhyaUkraine

Personalised recommendations