Advertisement

Study of the Microstructure Induced by High-Flux Plasma via Transmission Electron Microscopy

  • A. V. Dubinko
  • D. A. Terentyev
  • E. E. Zhurkin
Article
  • 3 Downloads

Abstract

The annealed and heavily deformed states of the tungsten microstructure are studied using transmission electron microscopy after irradiation by high-flux plasma. Exposure to plasma substantially increases the dislocation density in the surface layers of both samples, namely, by more than an order of magnitude as compared to the initial value. At a distance of more than 10–15 μm from the surface, the material microstructure is comparable with that observed in the bulk of the sample not exposed to plasma. The given observation indicates that high-flux plasma produces deep and localized plastic deformation in the subsurface layer regardless of the initial hardening and dislocation density.

Keywords

tungsten high-flux plasma dislocations plastic deformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Pintsuk, Compr. Nucl. Mater. 4, 551 (2012).CrossRefGoogle Scholar
  2. 2.
    A. Loarte, G. Saibene, R. Sartori, et al., J. Nucl. Mater. 313, 962 (2003).CrossRefGoogle Scholar
  3. 3.
    A. Dubinko, A. Bakaeva, M. Hernandez-Mayoral, et al., Phys. Scr. T 167, 014030 (2016).CrossRefGoogle Scholar
  4. 4.
    G. Pintsuk and I. Uytdenhouwen, Int. J. Refract. Met. Hard Mater. 28 (6), 661 (2010).CrossRefGoogle Scholar
  5. 5.
    H. Sheng, G. Van Oost, E. Zhurkin, et al., J. Nucl. Mater. 444 (1–3), 214 (2014).CrossRefGoogle Scholar
  6. 6.
    Material, Specification for the Supply of Tungsten Bars for the ITER Divertor IDM Number: ITER D 2X38PN v. 1.0, 2010.Google Scholar
  7. 7.
    G. J. Van Rooij, V. P. Veremiyenko, W. J. Goedheer, et al., Appl. Phys. Lett. 90, 121501 (2007).CrossRefGoogle Scholar
  8. 8.
    G. De Temmerman, J. J. Zielinski, S. van Diepen, et al., Nucl. Fusion 51, 073008 (2011).CrossRefGoogle Scholar
  9. 9.
    A. D. Quastel, J. W. Davis, A. A. Haasz, et al., J. Nucl. Mater. 359, 8 (2006).CrossRefGoogle Scholar
  10. 10.
    H. Van der Meiden, R. S. Al, C. J. Barth, et al., Rev. Sci. Instrum. 79, 013505 (2008).CrossRefGoogle Scholar
  11. 11.
    L. Buzi, G. De Temmerman, B. Unterberg, et al., J. Nucl. Mater. 463, 320 (2015).CrossRefGoogle Scholar
  12. 12.
    D. Terentyev, G. De Temmerman, B. Minov, et al., Nucl. Fusion 55 (1), 013007 (2015).CrossRefGoogle Scholar
  13. 13.
    D. Terentyev, G. De Temmerman, T. W. Morgan, et al., J. Appl. Phys. 117 (8), 083302 (2015).CrossRefGoogle Scholar
  14. 14.
    C. Y. Chiem and W. S. Lee, Mater. Sci. Eng., A 187 (1), 43 (1994).CrossRefGoogle Scholar
  15. 15.
    A. Dubinko, D. Terentyev, A. Bakaeva, et al., Int. J. Refract. Met. Hard Mater. 66, 105 (2017).CrossRefGoogle Scholar
  16. 16.
    D. Terentyev, A. Dubinko, A. Bakaeva, et al., Fusion Eng. Des. 124, 405 (2017).CrossRefGoogle Scholar
  17. 17.
    D. Terentyev, A. Dubinko, A. Bakaeva, et al., Phys. Scr. T 170, 014064 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Dubinko
    • 1
    • 2
  • D. A. Terentyev
    • 1
  • E. E. Zhurkin
    • 3
  1. 1.Belgian Nuclear Research CenterMolBelgium
  2. 2.Ghent UniversityGhentBelgium
  3. 3.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations