Advertisement

Effect of Segregation of Ni and Cr at Dislocation Loops on Their Interaction with Gliding Dislocations in Irradiated Fe−Ni−Cr BCC Alloys

  • A. V. Bakaev
  • D. A. Terentyev
  • E. E. Zhurkin
Article

Abstract

Ferritic–martensitic steels alloyed with chromium and containing nickel impurities are considered as promising structural materials for nuclear and thermonuclear power engineering. During operation, the plastic properties of such materials degrade under the influence of neutron irradiation caused by the generation of radiation defects of the crystal structure, in particular, dislocation loops and new phases (precipitates). In this paper, an atomistic computer simulation of the interaction of mobile edge dislocations with dislocation loops having the 〈100〉 and 1/2〈111〉 Burgers vectors forming a single extended defect with Ni−Cr precipitates is performed using the classical molecular dynamics method at various temperatures (300 and 600 K). Such composite radiation-induced defects cause a change in the plastic properties of the irradiated material due to radiation hardening. The results of studying the interactions of gliding dislocations with loops (both in pure iron and in the Fe−Ni−Cr alloy, taking into account the precipitation of Ni and Cr at dislocation loops) show that the presence of an increased concentration of chromium and nickel atoms near the dislocation-loop perimeter at 300 K either decreases the critical stress for passing the dislocation through a defect (by more than 50 MPa) for the 〈100〉 loops at 300 K or increases it for the 1/2〈111〉 loops at 300 K. At a high temperature (600 K), the presence of Ni and Cr impurities near the dislocation loop leads to an increase in the critical stress for both types of loops. It is shown that the presence of an increased concentration of Ni and Cr atoms near the loop perimeter facilitates or hinders (depending on the specific dislocation-loop configuration) the transverse gliding of dislocation segments, complicates the possibility of the resplitting of junction segments of the dislocation and loop in the plane of loop location, and causes the immobilization of the loop having the [111] Burgers vector parallel to the gliding plane of the dislocation at 300 K.

Keywords

high-chromium ferritic–martensitic steels neutron irradiation radiation-induced defects dislocation loops dislocation reactions plastic deformation atomistic simulation classical molecular dynamics method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. K. Mansur, A. F. Rowcliffe, R. K. Nanstad, and S. J. Zinkle, J. Nucl. Mater. 329–333, 166 (2004).  https://doi.org/10.1016/j.jnucmat.2004.04.016.CrossRefGoogle Scholar
  2. 2.
    C. Fazio, A. Alamo, A. Almazouzi, and S. De Grandis, J. Nucl. Mater. 392, 316 (2009).  https://doi.org/10.1016/j.jnucmat.2009.03.020.CrossRefGoogle Scholar
  3. 3.
    C. Fazio, D. G. Briceno, M. Rieth, and A. Gessi, Nucl. Eng. Des. 241, 3514 (2011).  https://doi.org/10.1016/j.nucengdes.2011.03.009.CrossRefGoogle Scholar
  4. 4.
    M. Matijasevic and A. Almazouzi, J. Nucl. Mater. 377, 147 (2008).  https://doi.org/10.1016/j.jnucmat.2008.02.061.CrossRefGoogle Scholar
  5. 5.
    D. Hull and D. J. Bacon, Introduction to Dislocations (Butterworth-Heinemann, Oxford, 2001).  https://doi.org/10.1016/B978-075064681-9/50001-8.Google Scholar
  6. 6.
    F. Bergner, A. Ulbricht, and C. Heintze, Scr. Mater. 61, 1060 (2009).  https://doi.org/10.1016/j.scriptamat.2009.08.028.CrossRefGoogle Scholar
  7. 7.
    V. Kuksenko, C. Pareige, C. Genevois, and F. Cuvilly, J. Nucl. Mater. 415, 61 (2011).  https://doi.org/10.1016/j.jnucmat.2011.05.042.CrossRefGoogle Scholar
  8. 8.
    H. Czichos, T. Saito, and L. E. Smith, Springer Handbook of Materials Measurement Methods (Springer, Heidelberg, Berlin, 2007).  https://doi.org/10.1007/978-3-540-30300-8.Google Scholar
  9. 9.
    Y. Osetsky, D. Bacon, and V. Mohles, Philos. Mag. 83, 3623 (2003).  https://doi.org/10.1080/14786430310001603364 CrossRefGoogle Scholar
  10. 10.
    Z. Rong, D. Bacon, and Y. Osetsky, Mater. Sci. Eng., A 400–401, 378 (2005).  https://doi.org/10.1016/j.msea.2005.03.066.CrossRefGoogle Scholar
  11. 11.
    T. Hatano and H. Matsui, Phys. Rev. B 72, 094105 (2005).  https://doi.org/10.1103/PhysRevB.72.094105.CrossRefGoogle Scholar
  12. 12.
    D. Terentyev, G. Bonny, and L. Malerba, J. Nucl. Mater. 386–388, 257 (2009).  https://doi.org/10.1016/j.jnucmat.2008.12.106.CrossRefGoogle Scholar
  13. 13.
    D. Terentyev and A. Bakaev, J. Phys.: Condens. Matter 25, 265702 (2013).  https://doi.org/10.1088/0953-8984/25/26/265702.Google Scholar
  14. 14.
    J. Jang, B. Lee, and J. Hong, J. Nucl. Mater. 373, 28 (2008).  https://doi.org/10.1016/j.jnucmat.2007.04.046.CrossRefGoogle Scholar
  15. 15.
    D. Terentyev, A. Bakaev, and E. E. Zhurkin, J. Phys.: Condens. Matter 26, 165402 (2014).  https://doi.org/10.1088/0953-8984/26/16/165402.Google Scholar
  16. 16.
    D. Terentyev, X. He, G. Bonny, and A. Bakaev, J. Nucl. Mater. 457, 173 (2015).  https://doi.org/10.1016/j.jnucmat.2014.11.023.CrossRefGoogle Scholar
  17. 17.
    A. V. Bakaev, D. A. Terent’ev, E. E. Zhurkin, and P. Yu. Grigor’ev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 7 (2), 211 (2013). doi 10.1134/S1027451013020067CrossRefGoogle Scholar
  18. 18.
    A. V. Bakaev, D. A. Terentyev, P. Yu. Grigorev, and E. E. Zhurkin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8 (2), 220 (2014). doi 10.1134/S1027451014020062CrossRefGoogle Scholar
  19. 19.
    A. V. Bakaev, D. A. Terentyev, P. Yu. Grigor’ev, and E. E. Zhurkin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (2), 290 (2015). doi 10.1134/S1027451015020056CrossRefGoogle Scholar
  20. 20.
    D. Terentyev and A. Bakaev, J. Nucl. Mater. 442, 208 (2013).  https://doi.org/10.1016/j.jnucmat.2013.08.044.CrossRefGoogle Scholar
  21. 21.
    P. Olsson, J. Wallenius, C. Domain, and K. Nordlund, Phys. Rev. B 72, 214119 (2005).  https://doi.org/10.1103/PhysRevB.72.214119.CrossRefGoogle Scholar
  22. 22.
    G. Bonny, A. Bakaev, P. Olsson, and C. Domain, J. Nucl. Mater. 484, 42 (2017).  https://doi.org/10.1016/j.jnucmat.2016.11.017.CrossRefGoogle Scholar
  23. 23.
    A. V. Bakaev, D. A. Terentyev, and E. E. Zhurkin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11 (3), 606 (2017). doi 10.1134/S1027451017030193CrossRefGoogle Scholar
  24. 24.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).Google Scholar
  25. 25.
    M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).  https://doi.org/10.1103/PhysRevB.29.6443.CrossRefGoogle Scholar
  26. 26.
    G. Bonny, R. C. Pasianot, and L. Malerba, Modell. Simul. Mater. Sci. Eng. 17, 025010 (2009).  https://doi.org/10.1088/0965-0393/17/2/025010.CrossRefGoogle Scholar
  27. 27.
    G. Bonny, R. C. Pasianot, D. Terentyev, and L. Malerba, Philos. Mag. 91, 1724 (2011).  https://doi.org/10.1080/14786435.2010.545780 CrossRefGoogle Scholar
  28. 28.
    Y. N. Osetsky and D. J. Bacon, Modell. Simul. Mater. Sci. Eng. 11, 427 (2003).  https://doi.org/10.1088/0965-0393/11/4/302.CrossRefGoogle Scholar
  29. 29.
    A. R. Leach, Molecular Modelling: Principles and Applications (Prentice Hall, Harlow, 2001).Google Scholar
  30. 30.
    C. Pareige, V. Kuksenko, and P. Pareige, J. Nucl. Mater. 456, 471 (2015).  https://doi.org/10.1016/j.jnucmat.2014.10.024.CrossRefGoogle Scholar
  31. 31.
    V. Kuksenko, C. Pareige, and P. Pareige, J. Nucl. Mater. 432, 160 (2013).  https://doi.org/10.1016/j.jnucmat.2012.07.021.CrossRefGoogle Scholar
  32. 32.
    E. E. Zhurkin, D. Terentyev, and M. Hou, J. Nucl. Mater. 417, 1082 (2011).  https://doi.org/10.1016/j.jnucmat.2010.12.191.CrossRefGoogle Scholar
  33. 33.
    D. Terentyev, P. Grammatikopoulos, D. Bacon, and Y. Osetsky, Acta Mater. 56, 5034 (2008).  https://doi.org/10.1016/j.actamat.2008.06.032.CrossRefGoogle Scholar
  34. 34.
    D. Terentyev, D. Bacon, and Y. Osetsky, J. Phys.: Condens. Matter 20, 445007 (2008).  https://doi.org/10.1088/0953-8984/20/44/445007.Google Scholar
  35. 35.
    Z. Rong, Y. N. Osetsky, and D. J. Bacon, Philos. Mag. 85, 1473 (2005).  https://doi.org/10.1080/14786430500036371 CrossRefGoogle Scholar
  36. 36.
    D. Bacon, Y. Osetsky, and Z. Rong, Philos. Mag. 86, 3921 (2006).  https://doi.org/10.1080/14786430600570527.CrossRefGoogle Scholar
  37. 37.
    A. Nomoto, N. Soneda, A. Takahashi, and S. Ishino, Mater. Trans. 46, 463 (2005). https://doi.org/10.2320/matertrans.46.463.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Bakaev
    • 1
    • 2
  • D. A. Terentyev
    • 2
  • E. E. Zhurkin
    • 1
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Belgian Nuclear Research CenterMolBelgium

Personalised recommendations