Advertisement

Grazing Incidence X-Ray Diffraction Study of Tantalum Thin Films

  • P. A. Yunin
  • Yu. N. Drozdov
  • N. S. Gusev
Article
  • 8 Downloads

Abstract

The features of the analysis of thin films by small-angle X-ray reflectometry and grazing incidence X-ray diffractometry are considered by the example of tantalum films. In particular, it is shown that a substantial shift of the diffraction peak at small angles of incidence is associated with the refraction of X-rays near the angle of total external reflection. The results of the measurements are in good agreement with calculations. These factors should be considered in grazing incidence X-ray diffractometry to obtain a correct description of the distribution of the properties of thin films over their depth. It is demonstrated that the approach proposed in this paper can be used to determine the material constants (δ, β) and the thickness of tantalum films.

Keywords

tantalum films small-angle X-ray reflectometry grazing incidence X-ray diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Dosch, B. W. Batterman, and D. C. Wack, Phys. Rev. Lett. 56, 1144 (1986).CrossRefGoogle Scholar
  2. 2.
    M. F. Toney and S. Brennan, J. Appl. Phys. 65, 4763 (1989).CrossRefGoogle Scholar
  3. 3.
    B. A. Van Brussel and J. Th. M. De Hosson, Appl. Phys. Lett. 64, 1585 (1994).CrossRefGoogle Scholar
  4. 4.
    M. Nauer, K. Ernst, W. Kautek, and M. Neumann-Spallart, Thin Solid Films 489, 86 (2005).CrossRefGoogle Scholar
  5. 5.
    L. G. Parratt, Phys. Rev. 95, 359 (1954).CrossRefGoogle Scholar
  6. 6.
    C. Wiemer, S. Ferrari, M. Fanciulli, et al., Thin Solid Films 450, 134 (2004).CrossRefGoogle Scholar
  7. 7.
    P. Colombi, P. Zanola, E. Bontempi, et al., J. Appl. Crystallogr. 39, 176 (2006).CrossRefGoogle Scholar
  8. 8.
    B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).CrossRefGoogle Scholar
  9. 9.
    M. F. Toney and S. Brennan, Phys. Rev. B 39, 7963 (1989).CrossRefGoogle Scholar
  10. 10.
    T. Noma, K. Takada, and A. Iida, X-Ray Spectrom. 28, 433 (1999).CrossRefGoogle Scholar
  11. 11.
    P. Colombi, P. Zanola, E. Bontempi, and L. E. Depero, Spectrochim. Acta, Part B 62, 554 (2007).CrossRefGoogle Scholar
  12. 12.
    Z. Matej, L. Nichtova, and R. Kuzel, Z. Kristallogr. Suppl. 30, 157 (2009).CrossRefGoogle Scholar
  13. 13.
    D. Simek, R. Kuzel, and D. Rafaja, J. Appl. Crystallogr. 39, 487 (2006).CrossRefGoogle Scholar
  14. 14.
    V. I. Bodnarchuk, P. Petrov, D. P. Kozlenko, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11 (1), 186 (2017).CrossRefGoogle Scholar
  15. 15.
    D. A. Tatarskiy, B. A. Gribkov, N. S. Gusev, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10 (3), 486 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute for Physics of MicrostructuresRussian Academy of SciencesNizhny NovgorodRussia
  2. 2.Lobachevsky State UniversityNizhny NovgorodRussia

Personalised recommendations