Advertisement

Room Temperature Spin Accumulation Effect in Boron Doped Si Created by Epitaxial Fe3Si/p-Si Schottky Contact

  • A. S. Tarasov
  • I. A. Bondarev
  • M. V. Rautskii
  • A. V. Lukyanenko
  • I. A. Tarasov
  • S. N. Varnakov
  • S. G. Ovchinnikov
  • N. V. Volkov
Article

Abstract

To study spin-dependent transport phenomena in Fe3Si/p-Si structures we fabricated 3-terminal planar microdevices and metal/semiconductor diode using conventional photolithography and wet chemical etching. I‒V curve of prepared diode demonstrates rectifying behavior, which indicates the presence of Schottky barrier in Fe3Si/p-Si interface. Calculated Schottky barrier height is 0.57 eV, which can provide necessary conditions for spin accumulation in p-Si. Indeed, in 3-terminal planar device with Fe3Si/p-Si Schottky contact Hanle effect was observed. By the analysis of Hanle curves spin lifetime spin diffusion length in p-Si were calculated, which are 145 ps and 405 nm, respectively (at T = 300 K). Spin lifetime strongly depends on temperature which can be related to the fact that spin-dependent transport in our device is realized via the surface states. This gives a perspective of creation of spintronic devices based on metal/semiconductor structure without need for forming tunnel or Schottky tunnel contact.

Keywords

spintronics hybrid structures Schottky diode Hanle effect spin accumulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. I. Rashba, Phys. Rev. B 62, R16267(R) (2000).  https://doi.org/10.1103/PhysRevB.62.R16267.CrossRefGoogle Scholar
  2. 2.
    Y. Ando, K. Hamaya, K. Kasahara, et al., Appl. Phys. Lett. 94 (18), 182105 (2009).  https://doi.org/10.1063/1.3130211.CrossRefGoogle Scholar
  3. 3.
    Y. Fujita, S. Yamada, Y. Ando, et al., J. Appl. Phys. 113 (1), 013916 (2013).  https://doi.org/10.1063/1.4773072.CrossRefGoogle Scholar
  4. 4.
    K. Hamaya, K. Ueda, Y. Kishi, et al., Appl. Phys. Lett. 93 (13), 132117 (2008).  https://doi.org/10.1063/1.2996581.CrossRefGoogle Scholar
  5. 5.
    T. Sadoh, M. Kumano, R. Kizuka, et al., Appl. Phys. Lett. 89 (18), 182511 (2006).  https://doi.org/10.1063/1.2378399.CrossRefGoogle Scholar
  6. 6.
    J. Herfort, H. P. Schönherr, and K. H. Ploog, Appl. Phys. Lett. 83 (19), 3912–3914 (2003).  https://doi.org/10.1063/1.1625426.CrossRefGoogle Scholar
  7. 7.
    Y. Ando, K. Kasahara, K. Yamane, et al., Appl. Phys. Express 3 (9), 093001 (2010).  https://doi.org/10.1143/APEX.3.093001.CrossRefGoogle Scholar
  8. 8.
    B. Huang, D. J. Monsma, and I. Appelbaum, Phys. Rev. Lett. 99 (17), 177209 (2007).  https://doi.org/10.1103/Phys-RevLett.99.177209.CrossRefGoogle Scholar
  9. 9.
    P. Li and H. Dery, Phys. Rev. Lett. 107 (10), 107203 (2011).  https://doi.org/10.1103/PhysRevLett.107.107203.CrossRefGoogle Scholar
  10. 10.
    Y. Song and H. Dery, Phys. Rev. B 86 (8), 085201 (2012).  https://doi.org/10.1103/PhysRevB.86.085201.CrossRefGoogle Scholar
  11. 11.
    J. L. Cheng, M. W. Wu, and J. Fabian, Phys. Rev. Lett. 104 (1), 016601 (2010).  https://doi.org/10.1103/PhysRev-Lett.104.016601.CrossRefGoogle Scholar
  12. 12.
    J. M. Tang, B. T. Collins, and M. E. Flatté, Phys. Rev. B 85 (4), 045202 (2012).  https://doi.org/10.1103/Phys-RevB.85.045202.CrossRefGoogle Scholar
  13. 13.
    N. V. Volkov, A. S. Tarasov, D. A. Smolyakov, et al., J. Magn. Magn. Mater. 383, 69–72 (2015).  https://doi.org/10.1016/j.jmmm.2014.11.014.CrossRefGoogle Scholar
  14. 14.
    N. V. Volkov, A. S. Tarasov, M. V. Rautskii, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (5), 984–994 (2015).  https://doi.org/10.1134/S1027451015050432.CrossRefGoogle Scholar
  15. 15.
    A. S. Tarasov, M. V. Rautskii, A. V. Lukyanenko, et al., J. Alloys Compd. 688, 1095–1100 (2016).  https://doi.org/10.1016/j.jallcom.2016.07.138.CrossRefGoogle Scholar
  16. 16.
    N. V. Volkov, A. S. Tarasov, M. V. Rautskii, et al., J. Magn. Magn. Mater. 440, 140–143 (2017).  https://doi.org/10.1016/j.jmmm.2016.12.092.CrossRefGoogle Scholar
  17. 17.
    N. V. Volkov, A. S. Tarasov, D. A. Smolyakov, et al., AIP Adv. 7 (1), 015206 (2017).  https://doi.org/10.1063/1.4974876.CrossRefGoogle Scholar
  18. 18.
    S. N. Varnakov, A. A. Lepeshev, S. G. Ovchinnikov, et al., Instrum. Exp. Tech. 47 (6), 839–843 (2004).  https://doi.org/10.1023/B:INET.0000049709.08368.3e.CrossRefGoogle Scholar
  19. 19.
    I. A. Yakovlev, S. N. Varnakov, B. A. Belyaev, et al., JETP Lett. 99 (9), 527–530 (2014).  https://doi.org/10.1134/S0021364014090124.CrossRefGoogle Scholar
  20. 20.
    A. S. Tarasov, A. V. Lukyanenko, I. A. Tarasov, et al., Thin Solid Films 642, 20–24 (2017).  https://doi.org/10.1016/j.tsf.2017.09.025.CrossRefGoogle Scholar
  21. 21.
    H. Vinzelberg, J. Schumann, D. Elefant, et al., J. Appl. Phys. 104 (9), 093707 (2008).  https://doi.org/10.1063/1.3008010.CrossRefGoogle Scholar
  22. 22.
    H. Y. Hung, S. Y. Huang, P. Chang, et al., J. Cryst. Growth 323 (1), 372–375 (2011).  https://doi.org/10.1016/j.jcrysgro.2010.11.075.CrossRefGoogle Scholar
  23. 23.
    S. K. Cheung and N. W. Cheung, Appl. Phys. Lett. 49 (2), 85–87 (1986).  https://doi.org/10.1063/1.97359.CrossRefGoogle Scholar
  24. 24.
    M. Okutan and F. Yakuphanoglu, Microelectron. Eng. 85 (3), 646–653 (2008).  https://doi.org/10.1016/j.mee.2007.11.011.CrossRefGoogle Scholar
  25. 25.
    K. Hamaya, Y. Ando, T. Sadoh, et al., Jpn. J. Appl. Phys. 50 (1R), 010101 (2011).  https://doi.org/10.1143/JJAP.50.010101.CrossRefGoogle Scholar
  26. 26.
    A. Fert and H. Jaffres, Phys. Rev. B 64 (18), 184420 (2001).  https://doi.org/10.1103/PhysRevB.64.184420.CrossRefGoogle Scholar
  27. 27.
    V. V. Osipov and A. M. Bratkovsky, Phys. Rev. B 72 (11), 115322 (2005).  https://doi.org/10.1103/Phys-RevB.72.115322.CrossRefGoogle Scholar
  28. 28.
    S. P. Dash, S. Sharma, R. S. Patel, et al., Nature 462 (7272), 491–494 (2009).  https://doi.org/10.1038/nature08570.CrossRefGoogle Scholar
  29. 29.
    A. Spiesser, S. Sharmaa, H. Saito, et al., arXiv:1211.1510 [cond-mat.mtrl-sci] (2012).  https://doi.org/10.1117/12.930839.
  30. 30.
    S. P. Dash, S. Sharma, J. C. Le Breton, et al., Phys. Rev. B 84 (5), 054410 (2011).  https://doi.org/10.1103/Phys-RevB.84.054410.CrossRefGoogle Scholar
  31. 31.
    A. Dankert, R. S. Dulal, and S. P. Dash, Sci. Rep. 3, 3196 (2013). doi 10.1038/srep03196CrossRefGoogle Scholar
  32. 32.
    M. Tran, H. Jaffrès, C. Deranlot, et al., Phys. Rev. Lett. 102 (3), 036601 (2009).  https://doi.org/10.1103/PhysRev-Lett.102.036601.CrossRefGoogle Scholar
  33. 33.
    R. Jansen, A. M. Deac, H. Saito, and S. Yuasa, Phys. Rev. B 85 (13), 134420 (2012).  https://doi.org/10.1103/Phys-RevB.85.134420.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Tarasov
    • 1
    • 2
  • I. A. Bondarev
    • 1
    • 2
  • M. V. Rautskii
    • 1
  • A. V. Lukyanenko
    • 1
    • 2
  • I. A. Tarasov
    • 1
    • 3
  • S. N. Varnakov
    • 1
    • 3
  • S. G. Ovchinnikov
    • 1
    • 2
  • N. V. Volkov
    • 1
  1. 1.Kirensky Institute of PhysicsFederal Research Center KSC SB RASKrasnoyarskRussia
  2. 2.Institute of Engineering Physics and Radio ElectronicsSiberian Federal UniversityKrasnoyarskRussia
  3. 3.Siberian State Aerospace UniversityKrasnoyarskRussia

Personalised recommendations