Advertisement

Thermal Stability of the Structure and Phase Composition of Titanium Treated with Compression Plasma Flows

  • V. I. Shymanski
  • N. N. Cherenda
  • V. V. Uglov
  • V. M. Astashynski
  • A. M. Kuzmitski
Article
  • 2 Downloads

Abstract

The results of studying the structure and phase composition of the surface layer of commercial pure VT1-0 titanium treated with compression plasma flows in nitrogen atmosphere and annealed in the temperature range of 400–900°C for 1 h are presented. Using the X-ray diffraction method, the α-Ti(O) solid solution is found to form in the titanium surface layer at 500°C, without pretreatment with plasma, and to transform into the titanium oxide TiO2 (rutile) phase at 600°C. Pretreatment of titanium with compression plasma flows promotes the formation of α-Ti(N) solid solution decreasing the rate of surface oxidation and increasing the initial temperature of rutile formation to 700°C, which indicates enhancement of the thermal stability of this structure.

Keywords

titanium titanium oxide rutile oxidation thermal annealing compression plasma flows phase composition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. Shepel’ and A. B. Markov, Tech. Phys. Lett. 37 (8), 772 (2011).CrossRefGoogle Scholar
  2. 2.
    Yu. A. Kolubaeva, Yu. F. Ivanov, A. D. Teresov, et al., Perspekt. Mater. 608 (2011).Google Scholar
  3. 3.
    N. N. Koval’ and Yu. F. Ivanov, Izv. Vyssh. Uchebn. Zaved., Fiz. 54 (11) (3), 103 (2011).Google Scholar
  4. 4.
    A. P. Surzhikov, T. S. Frangulyan, S. A. Ghyngazov, and N. N. Koval, Nucl. Instrum. Methods Phys. Res., Sect. B 267, 1072 (2009).CrossRefGoogle Scholar
  5. 5.
    Y. Gao, Appl. Surf. Sci. 264, 633 (2013).CrossRefGoogle Scholar
  6. 6.
    M. K. Lei, Z. H. Dong, Z. Zhang, et al., Surf. Coat. Technol. 201, 5613 (2007).CrossRefGoogle Scholar
  7. 7.
    V. A. Tarbokov, G. E. Remnev, and P. V. Kuznetsov, Fiz. Khim. Obrab. Mater., No. 3, 11 (2004).Google Scholar
  8. 8.
    I. E. Garkusha, O. V. Byrka, V. V. Chebotarev, et al., Vacuum 58, 195 (2000).CrossRefGoogle Scholar
  9. 9.
    V. Tereshin, A. Bandura, O. Byrka, et al., Vacuum 73, 555 (2004).CrossRefGoogle Scholar
  10. 10.
    B. A. Kalin, V. L. Yakushin, V. I. Vasiliev, and S. S. Tserevitinov, Surf. Coat. Technol. 96, 110 (1997).CrossRefGoogle Scholar
  11. 11.
    V. V. Uglov, V. M. Anishchik, V. V. Astashinskii, et al., Fiz. Khim. Obrab. Mater., No. 3, 23 (2002).Google Scholar
  12. 12.
    N. N. Cherenda, V. V. Uglov, N. V. Bibik, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5 (2), 305 (2011).CrossRefGoogle Scholar
  13. 13.
    V. I. Shymanski, N. N. Cherenda, V. V. Uglov, et al., Surf. Coat. Technol. 278, 183 (2015).CrossRefGoogle Scholar
  14. 14.
    N. N. Cherenda, V. V. Uglov, V. M. Anishchik, et al., Surf. Coat. Technol. 200, 5334 (2006).CrossRefGoogle Scholar
  15. 15.
    V. V. Uglov, N. N. Cherenda, A. K. Stal’moshenok, et al., Vak. Tekh. Tekhnol. 16 (2), 123 (2006).Google Scholar
  16. 16.
    V. V. Uglov, N. N. Cherenda, V. I. Shimanski, et al., Inorg. Mater.: Appl. Res. 1 (4), 279 (2010).CrossRefGoogle Scholar
  17. 17.
    N. N. Cherenda, A. V. Basalai, V. I. Shimanskii, et al., Dokl. Nats. Akad. Nauk Belarusi 60 (2), 102 (2016).Google Scholar
  18. 18.
    V. M. Astashynski, S. I. Ananin, V. V. Askerko, et al., Surf. Coat. Technol. 180–181, 392 (2004).CrossRefGoogle Scholar
  19. 19.
    N. N. Cherenda, V. V. Uglov, V. M. Anishchik, et al., Surf. Coat. Technol. 200, 5334 (2006).CrossRefGoogle Scholar
  20. 20.
    V. V. Askerko, in Proc. 6th Int. Conference “Interaction between Radiation and Solid” (Minsk, 2005), p.200.Google Scholar
  21. 21.
    A. V. Korshunov, A. P. Il’in, A. I. Lotkov, et al., Izv. Tomsk. Politekh. Univ. Khim. 319 (3), 10 (2011).Google Scholar
  22. 22.
    State Diagrams of Binary Metal Systems. Handbook, Ed. by N. P. Lyakishev (Mashinostroenie, Moscow, 2001), Vol. 3, Book 1 [in Russian].Google Scholar
  23. 23.
    U. Zwicker, Titan und Titanlegierungen (Springer, Berlin, Heidelberg, 1974).CrossRefGoogle Scholar
  24. 24.
    P. Konarski, V. I. Shymanski, and V. V. Uglov, et al., in Proc. 8th Int. Conference “Interaction between Radiation and Solid” (Minsk, 2009), p.18.Google Scholar
  25. 25.
    V. M. Astashinskii, V. V. Uglov, N. N. Cherenda, and V. I. Shimanskii, Titanium Modifying Caused by Compression Plasma Flows (Belorusskaya Nauka, Minsk, 2016) [in Russian].Google Scholar
  26. 26.
    N. N. Cherenda, V. I. Shimanskii, V. V. Uglov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6 (2), 319 (2012).CrossRefGoogle Scholar
  27. 27.
    C. Hu, H. Xin, L. M. Watson, and T. N. Baker, Acta Mater. 45, 4311 (1997).CrossRefGoogle Scholar
  28. 28.
    D. S. R. Krishna, Y. L. Brama, and Y. Sun, Tribol. Int. 40, 329 (2007).CrossRefGoogle Scholar
  29. 29.
    A. Moatti, R. Bayati, and J. Narayan, Acta Mater. 103, 502 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. I. Shymanski
    • 1
    • 2
  • N. N. Cherenda
    • 1
    • 2
  • V. V. Uglov
    • 1
    • 2
  • V. M. Astashynski
    • 3
  • A. M. Kuzmitski
    • 3
  1. 1.Belarusian State UniversityMinskBelarus
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia
  3. 3.Lykov Institute of Heat and Mass Transfer of the National Academy of Sciences of BelarusMinskBelarus

Personalised recommendations