Advertisement

Phosphatidylcholine Membrane Fusion Induced by Dimethyl Sulfoxide and Diethyl Sulfoxide

  • Yu. E. GorshkovaEmail author
Article
  • 19 Downloads

Abstract

The kinetics of unilamellar vesicle fusion induced by the addition of dimethyl sulfoxide (DMSO) and diethyl sulfoxide (DESO) with mole fractions of 0.1 and 0.2 is studied in the liquid-crystal phase using small-angle neutron scattering. Multilamellar vesicles formed due to the partial fusion of unilamellar vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphadylcholine (DMPC) with the addition of DMSO (ХDMSO = 0.1, 0.2) and DESO (ХDESO = 0.2) are stable for a long time. The cooling–heating process does not affect the stability of the formed systems. The presence of DMSO and DESO with a mole fraction of 0.2 leads to disappearance of the ripple phase. The addition of DESO to the unilamellar vesicles of DMPC in D2O with a mole fraction of 0.1 does not affect the structure of unilamellar vesicles for 5–15 minutes after adding the sulfoxide in the liquid-crystal phase. Three hours later, a stable system consisting of unilamellar vesicles with a lipid bilayer thickness of 27.3(2) Å and multilamellar vesicles with a repeat distance of d = 43.6(2) Å is formed. During cooling, multilamellar vesicles are destroyed in the region of the main phase transition (T'm = 24.8(9)°C for the investigated system) and unilamellar vesicles are formed.

Keywords

dimethyl sulfoxide diethyl sulfoxide fusion of unilamellar vesicles small-angle neutron scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. A. Chismadzhev, Soros Educ. J. 7, 4 (2001).Google Scholar
  2. 2.
    J. A. Lucy, Nature 227, 814 (1970). doi 10.1038/227815a0CrossRefGoogle Scholar
  3. 3.
    J. Meldolesi, N. Borgese, P. D. Camilli, and B. Ceccarelli, Cell Surf. Rev. 5, 510 (1978).Google Scholar
  4. 4.
    R. Bischoff, Cell Surf. Rev. 5, 127 (1978).Google Scholar
  5. 5.
    Q. F. Ahkong, D. Fisher, W. Tampion, and J. A. Lucy, Nature 253, 194 (1975). doi 10.1038/253194a0SCrossRefGoogle Scholar
  6. 6.
    R. S. Mondal and M. Sarkar, J. Lipids 2011, 528784 (2011). doi 10.1155/2011/528784Google Scholar
  7. 7.
    R. Notman, M. Noro, B. O’Malley, and J. J. Anwar, J. Am. Chem. Soc. 128 (43), 13982 (2006). doi 10.1021/ja063363tCrossRefGoogle Scholar
  8. 8.
    A. A. Gurtovenko and J. Anwar, J. Phys. Chem. B 111 (35), 10453 (2007). doi 10.1021/jp073113eCrossRefGoogle Scholar
  9. 9.
    J. E. Lovelock and M. W. H. Bishop, Nature 183, 1394 (1959). doi 10.1038/1831394a0CrossRefGoogle Scholar
  10. 10.
    J. Ali and J. N. Shelton, J. Reprod. Fertil. 99 (2), 471 (1993). doi 10.1530/jrf.0.0990471CrossRefGoogle Scholar
  11. 11.
    S. A. Markarian, S. Bonora, K. A. Bagramyan, and V. B. Arakelyan, Cryobiology 49 (1), 1 (2004). doi 10.1016/j.cryobiol.2004.04.001CrossRefGoogle Scholar
  12. 12.
    S. A. Markarian, A. L. Zatikyan, S. Bonora, and C. Fagnano, J. Mol. Struct. 655, 285 (2003). doi 10.1016/S0022-2860(03)00313-2CrossRefGoogle Scholar
  13. 13.
    S. Bonora, S. A. Markarian, A. Trinchero, and K. R. Grigorian, Thermochim. Acta 433, 19 (2005). doi 10.1016/j.tca.2005.02.011CrossRefGoogle Scholar
  14. 14.
    Yu. E. Gorshkova, O. I. Ivankov, A. I. Kuklin, and V. I. Gordeliy, J. Phys.: Conf. Ser. 351, 012006 (2012). doi 10.1088/1742-6596/351/1/012006Google Scholar
  15. 15.
    S. Tristram-Nagle, T. Moore, H. Petrache, and J. F. Nagle, Biochim. Biophys. Acta 1396 (1), 19 (1998). doi 10.1016/S0005-2736(97)00197-1CrossRefGoogle Scholar
  16. 16.
    V. I. Gordeliy, M. A. Kiselev, P. Lesieur, A. V. Pole, and J. Teixeira, Biophys. J. 75 (5), 2343 (1998). doi 10.1016/S0006-3495(98)77678-7CrossRefGoogle Scholar
  17. 17.
    W. Curatolo, Biochim. Biophys. Acta 817 (1), 134 (1985). doi 10.1016/0005-2736(85)90075-6CrossRefGoogle Scholar
  18. 18.
    Z. W. Yu and P. J. Quinn, Mol. Membr. Biol. 15, 59 (1998). doi 10.3109/09687689809027519CrossRefGoogle Scholar
  19. 19.
    R. P. Rand and A. Parsegian, Biochim. Biophys. Acta 988 (3), 351 (1989). doi 10.1016/0304-4157(89)90010-5CrossRefGoogle Scholar
  20. 20.
    G. Cevc, J. M. Seddon, and D. Marsh, Biochim. Biophys. Acta 814 (1), 141 (1985). doi 10.1016/0005-2736(85)90429-8CrossRefGoogle Scholar
  21. 21.
    J. E. Gorshkova and V. I. Gordeliy, Crystallogr. Rep. 52 (3), 535 (2007). doi 10.1134/S1063774507030364CrossRefGoogle Scholar
  22. 22.
    G. Cevc and H. Richardsen, Adv. Drug Delivery Rev. 38 (3), 207 (1999). doi 10.1016/S0169-409X(99)00030-7CrossRefGoogle Scholar
  23. 23.
    S. Nir, J. Wilschut, and J. Bentz, Biochim. Biophys. Acta 688 (1), 275 (1982). doi 10.1016/0005-2736(82)90604-6CrossRefGoogle Scholar
  24. 24.
    Yu. E. Gorshkova, J. Optoelectron. Adv. Mater. 17 (9–10), 1532 (2015).Google Scholar
  25. 25.
    A. I. Kuklin, A. Kh. Islamov, and V. I. Gordeliy, Neutron News 16 (3), 16 (2005). doi 10.1080/10448630500454361CrossRefGoogle Scholar
  26. 26.
    A. G. Soloviev, T. N. Murugova, A. Kh. Islamov, and A. I. Kuklin, J. Phys.: Conf. Ser. 351, 012027 (2012).Google Scholar
  27. 27.
    Yu. M. Ostanevich, Makromol. Chem., Macromol. Symp. 15, 91 (1988). doi 10.1002/masy.19880150107CrossRefGoogle Scholar
  28. 28.
    W. Knoll, J. Haas, H. B. Sturhrmann, H. H. Fuldner, H. Vogel, and E. Sackmann, J. Appl. Crystallogr. 14, 191 (1981). doi 10.1002/masy.19880150107CrossRefGoogle Scholar
  29. 29.
    T. Nawroth, H. Conrad, and K. Dose, Phys. B (Amsterdam, Neth.) 156, 477. doi 10.1016/0921-4526(89)90708-4Google Scholar
  30. 30.
    A. Guinier and G. Fournet, Small-Angle Scattering of X-Rays (John Wiley and Sons, New York, 1955).Google Scholar
  31. 31.
    L. A. Feigin and D. I. Svergun, Structure Analysis by Small-Angle X-Ray and Neutron Scattering (Plenum Press, New York, London, 1987). doi 10.1002/actp.1989.010400317CrossRefGoogle Scholar
  32. 32.
    V. I. Gordeliy, V. Cherezov, and J. Teixeira, Phys. Rev. E 72, 1 (2005). doi 10.1103/PhysRevE.72.061913CrossRefGoogle Scholar
  33. 33.
    M. Doucet, J. H. Cho, A. Gervaise, et al., SasView, Ver. 4.1, Zenodo. doi 10.5281/zenodo.438138Google Scholar
  34. 34.
  35. 35.
    A. G. Soloviev, T. M. Solovieva, and A. I. Kuklin, SAS-5.1.0. https://doi.org/wwwinfo.jinr.ru/programs/jinrlib/sas/indexe.html.
  36. 36.
    Yu. E. Gorshkova, A. I. Kuklin and V. I. Gordeliy, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11 (1), (2017). doi 10.1134/S1027451016050499Google Scholar
  37. 37.
    Yu. E. Gorshkova and O. I. Ivankov, J. Phys.: Conf. Ser. 848, 012014 (2017). doi 10.1088/1742-6596/848/1/012014Google Scholar
  38. 38.
    L. S. Hirst, A. Ossowski, M. Fraser, J. Geng, J. V. Selinger, and R. L. B. Selinger, Proc. Natl. Acad. Sci. U. S. A. 110 (9), 3242 (2013). doi 10.1073/pnas.1213994110CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Frank Laboratory of Neutron PhysicsJoint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations