Advertisement

Evolution of the Continuous-Atomistic Method for the Simulation of Processes of the Interaction between Heavy Ions and Metals

  • B. Batgerel
  • I. V. Puzynin
  • T. P. Puzynina
  • I. G. Hristov
  • R. D. Hristova
  • Z. K. Tukhliev
  • Z. A. Sharipov
Article
  • 7 Downloads

Abstract

The evolution of the continuous-atomistic approach to the simulation of processes of the interaction between high-energy heavy ions and metals is presented in this paper. The continuous-atomistic model is described by two different classes of equations, namely, thermal-conductivity equations with a source in the thermal-spike model and equations of motion of material points irradiated with a beam in a model of molecular dynamics. A software package is developed for simulation within the framework of the continuous-atomistic model. The results of simulation of the processes of metal-target irradiation with high-energy heavy ions depending on the parameters of the source function and the electron–phonon interaction coefficient are obtained.

Keywords

the thermal-spike model molecular-dynamics method changes in structures continuous-atomistic approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. M. Lifshits, Dokl. Akad. Nauk SSSR 109 (6), 1109 (1956).Google Scholar
  2. 2.
    M. I. Kaganov, I. M. Lifshits, and L. V. Tanatarov, At. Energ. 6, 391 (1959).Google Scholar
  3. 3.
    I. V. Amirkhanov, Yu. N. Cheblukov, A. Yu. Didyk, A. Hofman, et al., Phys. Part. Nucl. 37 (6), 837 (2006).CrossRefGoogle Scholar
  4. 4.
    Kh. T. Kholmurodov, M. V. Altaiskii, I. V. Puzynin, et al., Phys. Part. Nucl. 34 (2), 244 (2003).Google Scholar
  5. 5.
    D. Ivanov and L. Zhigilei, Phys. Rev. B 68, 064114 (2003).CrossRefGoogle Scholar
  6. 6.
    A. M. Rutherford and D. M. Duffy, J. Phys.: Condens. Matter 19, 496201 (2007).Google Scholar
  7. 7.
    S. Dimova, I. Puzynin, T. Puzynina, et al., CEUR Workshop Proc. 1787, 184 (2016).Google Scholar
  8. 8.
    J. P. Biersack and L. G. Haggmark, Nucl. Instrum. Methods Phys. Res., Sect. B 174, 257 (1980).CrossRefGoogle Scholar
  9. 9.
    C. Dufour, et al., Radiat. Eff. Defects Solids 126, 119 (1993).CrossRefGoogle Scholar
  10. 10.
    M. R. P. Waligorski, R. M. Hamm, and R. Katz, Nucl. Tracks Radiat. Meas. 82, 356 (1986).Google Scholar
  11. 11.
    Yu. N. Yavlinskii, Nucl. Instrum. Methods Phys. Res., Sect. B 146, 142 (1998).CrossRefGoogle Scholar
  12. 12.
    Z. G. Wang, et al., J. Phys.: Condens. Matter 6, 6733 (1994).Google Scholar
  13. 13.
    I. V. Amirkhanov, I. V. Puzynin, T. P. Puzynina, et al., Vestn. Tver. Gos. Univ., No. 8, 17 (2009).Google Scholar
  14. 14.
    A. A. Samarskii and A. V. Gulin, Numerical Methods (Nauka, Moscow, 1989) [in Russian].Google Scholar
  15. 15.
    L. Verlet, Phys. Rev. 159 (1), 98 (1967).CrossRefGoogle Scholar
  16. 16.
    B. L. Holian, et al., Phys. Rev. A 43 (6), 2655 (1991).CrossRefGoogle Scholar
  17. 17.
    A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18 (1), 015012 (2009).CrossRefGoogle Scholar
  18. 18.
    F. F. Komarov, Usp. Fiz. Nauk 173, 1287 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • B. Batgerel
    • 1
    • 3
  • I. V. Puzynin
    • 1
  • T. P. Puzynina
    • 1
  • I. G. Hristov
    • 2
  • R. D. Hristova
    • 2
  • Z. K. Tukhliev
    • 1
  • Z. A. Sharipov
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubnaRussia
  2. 2.Sofia University “St. Kliment Ohridski”SofiaBulgaria
  3. 3.Institute of Physics and TechnologyMongolian Academy of SciencesUlaanbaatorMongolia

Personalised recommendations