X-Ray Diffraction and Mössbauer Studies of the Structural Features of BiFe1 ‒ xZnxO3 Multiferroics

  • A. A. AmirovEmail author
  • M. M. Guseynov
  • D. M. Yusupov
  • N. Z. Abdulkadirova
  • Y. A. Chaudhary
  • S. T. Bendre


The structure of ceramic BiFe1‒xZnxO3 multiferroic samples is investigated using the X-ray diffraction method and Mössbauer spectroscopy. X-ray diffraction analysis of the samples indicates the existence of the Bi12(Bi0.5Fe0.5)O19.5 impurity phase. High-temperature heating of the samples generates additional phases. The parameters of the Mössbauer spectra depend on the zinc concentration. In this case, for pure bismuth ferrite, the spectrum is a superposition between two Zeeman sextets and two paramagnetic doublets arising from two nonequivalent magnetic and electrical positions occupied by iron ions at the crystallattice sites of a sample. The replacement of iron ions with zinc ions substantially affects the spectrum parameters. This is probably related to changes in the spin-cycloid structure typical of multiferroics, the destruction of which stimulates the appearance of significant magnetoelectric interactions.


multiferroics bismuth ferrite Mössbauer spectra isomeric shift quadrupole splitting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. K. Zvezdin and A. P. Pyatakov, Usp. Fiz. Nauk 182, 594 (2012).Google Scholar
  2. 2.
    I. Sosnowska, T. Peterlin-Neumaier, and E. Steichele, J. Phys. C: Solid State Phys. 15, 4835 (1982).CrossRefGoogle Scholar
  3. 3.
    A. V. Zalessky, A. A. Frolov, T. A. Khimich, et al., Europhys. Lett. 50, 547 (2000).CrossRefGoogle Scholar
  4. 4.
    A. V. Zalesskii, A. A. Frolov, A. K. Zvezdin, et al., J. Exp. Theor. Phys. (JETP) 95 (1), 101 (2002).CrossRefGoogle Scholar
  5. 5.
    M. Kumar and K. L. Yadav, Appl. Phys. Lett. 91, 242901 (2007). doi 10.1063/1.2816118CrossRefGoogle Scholar
  6. 6.
    D. H. Kim, H. N. Lee, M. D. Biegalski, and H. M. Christen, Appl. Phys. Lett. 91, 042906 (2007). doi 10.1063/1.2763964CrossRefGoogle Scholar
  7. 7.
    M. Kumar and K. L. Yadav, J. Appl. Phys. 100, 074111 (2006).CrossRefGoogle Scholar
  8. 8.
    V. A. Khomchenko, D. A. Kiselev, J. M. Vieira, A. L. Kholkin, M. A. Sa, and Y. G. Pogorelov, Appl. Phys. Lett. 90 (24), 242901(1)–242901(3) (2007). doi 10.1063/1.2747665CrossRefGoogle Scholar
  9. 9.
    S. Chen, L. Wang, H. Xuan, Y. Zheng, D. Wang, J. Wu, Y. Du, and Z. Huang, J. Alloys Compd. 506, 537 (2010). doi 10.1016/j.jallcom.2010.07.129CrossRefGoogle Scholar
  10. 10.
    A. O. Konovalova, Extended Abstract of Candidate’s Dissertation in Mathematics and Physics (Moscow State Technical Univ. of Radio Engineering, Electronics and Automation, Moscow, 2012).Google Scholar
  11. 11.
    Yu. N. Venevtsev, V. V. Gagulin, and V. N. Lyubimov, Ferroelectromagnetics (Nauka, Moscow, 1982) [in Russian].Google Scholar
  12. 12.
    Y. A. Chaudhari, A. Singh, E. M. Abuassaj, R. Chatterjee, and S. T. Bendre, J. Alloys Compd. 518, 51 (2012). doi 10.1016/j.jallcom.2011.12.122CrossRefGoogle Scholar
  13. 13.
    A. A. Amirov, I. K. Kamilov, D. M. Yusupov, et al., Phys. Procedia 75, 10 (2015). doi 10.1016/j.phpro.2015.12.002CrossRefGoogle Scholar
  14. 14.
    A. T. Kozakov, A. G. Kochur, V. I. Torgashev, et al., J. Alloys Compd. 664, 392 (2016). doi 10.1016/j.jallcom. 2015.12.241CrossRefGoogle Scholar
  15. 15.
    I. A. Verbenko, Yu. M. Gufan, S. P. Kubrin, A. A. Amirov, et al., Bull. Russ. Acad. Sci.: Phys. 74 (8), 1141 (2010).CrossRefGoogle Scholar
  16. 16.
    O. M. Lemine, Phys. B (Amsterdam, Neth.) 406, 1989 (2011). doi 10.1016/j.physb.2011.02.072CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Amirov
    • 1
    • 2
    Email author
  • M. M. Guseynov
    • 1
  • D. M. Yusupov
    • 1
  • N. Z. Abdulkadirova
    • 1
  • Y. A. Chaudhary
    • 3
  • S. T. Bendre
    • 3
  1. 1.Amirkhanov Institute of Physics, Dagestan Scientific CentreRussian Academy of SciencesMakhachkalaRussia
  2. 2.Interdisciplinary Reference Centre: Functionalized Magnetic Materials for Energy and Biomedical Applications (FunMagMa)Immanuel Kant Baltic Federal UniversityKaliningradRussia
  3. 3.Department of Physics, School of Physical SciencesNorth Maharashtra UniversityJalgaonIndia

Personalised recommendations