Advertisement

Structural Analysis of Aluminum Oxyhydroxide Aerogel by Small Angle X-Ray Scattering

  • A. N. KhodanEmail author
  • G. P. Kopitsa
  • Kh. E. Yorov
  • A. E. Baranchikov
  • V. K. Ivanov
  • A. Feoktystov
  • V. Pipich
Article
  • 44 Downloads

Abstract

The work presents studies on the microstructure and mesostructure of nanostructured aluminum oxyhydroxide formed as a high porous monolithic material through the surface oxidation of aluminum liquidmetal solution in mercury in a temperature- and humidity-controlled air atmosphere. The methods of X-ray diffraction analysis, thermal analysis, the low temperature adsorption of nitrogen vapors, transmission electron microscopy, small-angle and very small-angle neutron scattering, and small-angle X-ray scattering are used for comprehensive investigation of the samples synthesized at 25°С as well as that annealed at temperatures up to 1150°C. It is found that the structure of the monolithic samples can be described within the framework of a three-level model involving primary heterogeneities (typical length scale of rc ≈ 9–19 Å), forming fibrils (cross-sectional radius R ≈ 36–43 Å and length L ≈ 3200–3300 Å) or lamellae (thickness T ≈ 110 Å and width W ≈ 3050 Å) which, in turn, are integrated into large-scale aggregates (typical size R c ≈ 1.25–1.4 μm) with an insignificant surface roughness. It is shown that a high specific surface (~200 m2/g) typical for the initial sample is maintained upon its thermal annealing up to 900°С, and it decreases to 100 m2/g after heat treatment at 1150°С due to fibrillary agglomeration.

Keywords

nanostructured aluminum oxyhydroxide aerogels small-angle neutron scattering small-angle X-ray scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Wislicenus, Z. Chem. Ind. Kolloide 2, 11 (1908).CrossRefGoogle Scholar
  2. 2.
    W. Cheng, F. Rechberger, and M. Niederberger, Nanoscale 8, 14074 (2016).CrossRefGoogle Scholar
  3. 3.
    S. M. Jung, H. Y. Jung, W. Fang, et al., Nano Lett. 14, 1810 (2014).CrossRefGoogle Scholar
  4. 4.
    Y. Tang, S. Gong, Y. Chen, et al., ACS Nano 8, 5707 (2014).CrossRefGoogle Scholar
  5. 5.
    Z. Lin, Z. Zeng, X. Gui, et al., Adv. Energy Mater. 6, 1600554 (2016).CrossRefGoogle Scholar
  6. 6.
    J.-L. Vignes, L. Mazerolles, and D. Michel, Key Eng. Mater. 132–136, 432 (1997).CrossRefGoogle Scholar
  7. 7.
    P. N. Martynov, R. Sh. Askhadullin, P. A. Yudintsev, and A. N. Khodan, Nov. Prom. Tekhnol., No. 4, 48 (2008).Google Scholar
  8. 8.
    J.-L. Vignes, C. Frappart, T. Di Costanzo, et al., J. Mater. Sci. 43, 1234 (2008).CrossRefGoogle Scholar
  9. 9.
    V. E. Asadchikov, R. S. Askhadullin, V. V. Volkov, et al., JETP Lett. 101, 556 (2015).CrossRefGoogle Scholar
  10. 10.
    G. Goerigk and Z. Varga, J. Appl. Crystallogr. 44, 337 (2011).CrossRefGoogle Scholar
  11. 11.
    A. Radulescu, E. Kentzinger, J. Stellbrink, et al., Neutron News 16, 18 (2005).CrossRefGoogle Scholar
  12. 12.
    G. D. Wignall and F. S. Bates, J. Appl. Crystallogr. 20, 28 (1987).CrossRefGoogle Scholar
  13. 13.
    http://iffwww.iff.kfa-juelich.de/~pipich/dokuwiki/doku.php/qtikws.Google Scholar
  14. 14.
    W. Schmatz, T. Springer, J. Schelten, and K. Ibel, J. Appl. Crystallogr. 7, 96 (1974).CrossRefGoogle Scholar
  15. 15.
    http://www.esrf.eu/computing/scientific/FIT2D/.Google Scholar
  16. 16.
    P. Euzen, P. Raybaud, X. Krokidis, et al., Handbook of Porous Solids, Ed. by F. Schüth, (Wiley-VCH, Weinheim, 2008).Google Scholar
  17. 17.
    S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, J. Am. Chem. Soc. 62, 1723 (1940).CrossRefGoogle Scholar
  18. 18.
    J. H. De Boer, The Structure and Properties of Porous Materials (Colston Papers, London, 1958), p. 68.Google Scholar
  19. 19.
    P. Debye and A. M. J. Bueche, Ann. Phys. (N. Y., NY, U. S.) 20, 518 (1949).Google Scholar
  20. 20.
    V. Luzzati, Acta Crystallogr. 13, 939 (1960).CrossRefGoogle Scholar
  21. 21.
    O. Kratky, Prog. Biophys. Mol. Biol. 13, 105 (1963).CrossRefGoogle Scholar
  22. 22.
    Small-Angle X-ray Scattering, Ed. by O. Glatter and O. Kratky (Academic Press, London, 1982), p. 155.Google Scholar
  23. 23.
    R. P. Hjelm, P. Thiyagarajan, and H. Alkan-Onyuksel, J. Phys. Chem. 96, 8653 (1992).CrossRefGoogle Scholar
  24. 24.
    P. D. Southon, J. R. Bartlett, J. L. Woolfrey, and B. Ben-Nissan, Chem. Mater. 14, 4313 (2002).CrossRefGoogle Scholar
  25. 25.
    G. Beaucage, T. A. Ulibarri, E. P. Black, and D. W. Schaefer, in ACS Symposium Series, Vol. 585: Hybrid Organic-Inorganic Composites, Ed. by J. Mark, et al. (American Chemical Society, Washington DC, 1985), p. 97.Google Scholar
  26. 26.
    M. Štěpánek, P. Matějíček, K. Procházka, et al., Langmuir 27, 5275 (2011).CrossRefGoogle Scholar
  27. 27.
    T. V. Khamova, O. A. Shilova, G. P. Kopitsa, V. Angelov, A. Zhigunov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10 (1), 113 (2016).CrossRefGoogle Scholar
  28. 28.
    B. Hammouda, J. Appl. Crystallogr. 43, 716 (2010).CrossRefGoogle Scholar
  29. 29.
    P. W. Schmidt, D. Avnir, D. Levy, et al., J. Chem. Phys. 94, 1474 (1991).CrossRefGoogle Scholar
  30. 30.
    J. Teixera, in On Growth and Form. Fractal and Non-Fractal Patterns in Physics, Ed. by H. E. Stanley and N. Ostrovsky (Martinus Nijloff Publ., Boston, 1986), p. 145.Google Scholar
  31. 31.
    G. Porod, Kolloid-Z. 125, 51 (1952).CrossRefGoogle Scholar
  32. 32.
    G. Porod, Kolloid-Z. 125, 109 (1952).Google Scholar
  33. 33.
    P. Wong, Phys. Rev. B 32, 7417 (1985).CrossRefGoogle Scholar
  34. 34.
    P. W. Schmidt, Modern Aspects of Small-Angle Scattering, Ed. by H. Brumberger (Kluwer Academic Publ., Dordrecht, 1995), p. 1.Google Scholar
  35. 35.
    Guinier, A. and Fournet, G., Small Angle Scattering of X-rays (John Wiley and Sons, New York, 1955).Google Scholar
  36. 36.
    G. Beaucage, J. Appl. Crystallogr. 28, 717 (1995).CrossRefGoogle Scholar
  37. 37.
    N. N. Gubanova, A. Ye. Baranchikov, G. P. Kopitsa, et al., Ultrason. Sonochem. 24, 230 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. N. Khodan
    • 1
    Email author
  • G. P. Kopitsa
    • 2
    • 3
  • Kh. E. Yorov
    • 4
  • A. E. Baranchikov
    • 5
  • V. K. Ivanov
    • 5
    • 6
  • A. Feoktystov
    • 7
  • V. Pipich
    • 7
  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Konstantinov Petersburg Nuclear Physics InstituteNational Research Center “Kurchatov Institute”GatchinaRussia
  3. 3.Grebenshchikov Institute of Silicate ChemistryRussian Academy of SciencesSt.-PetersburgRussia
  4. 4.Moscow State UniversityMoscowRussia
  5. 5.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  6. 6.National Research Tomsk State UniversityTomskRussia
  7. 7.Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at MLZGarchingGermany

Personalised recommendations