Advertisement

Influence of annealing temperature and its atmosphere on the properties of zinc implanted silicon

  • V. V. PrivezentsevEmail author
  • V. S. Kulikauskas
  • V. V. Zatekin
  • K. D. Shcherbachev
  • N. Yu. Tabachkova
  • K. B. Eidelman
  • S. V. Ksenich
  • A. A. Batrakov
Article
  • 27 Downloads

Abstract

The presented results characterize nanoparticle formation in n-Si(100) samples implanted with 50-keV 64Zn+ ions (the dose is 5 × 1016 cm‒2) at room temperature followed by heat treatment in an oxygen or nitrogen atmosphere at temperatures of 400–900°C. Defects and zinc concentration profiles are investigated via the Rutherford backscattering spectroscopy with the help of the channeling technique, in which 1.7-MeV He+ ions are scattered at an angle of 110°. The silicon surface layer is visualized using a transmission electron microscope equipped with an energy-dispersive microanalyzer. The surface topology of the implanted and annealed samples is studied via atomic-force microscopy. The implantation process is accompanied by the formation of a 150-nm-thick amorphous Si surface layer containing Zn nanoparticles with an average size of 4 nm, below which a radiation-damaged layer 50 nm thick is generated. After 800°C annealing in an oxygen atmosphere, a recrystallized single-crystal silicon layer with a complex ZnO/Zn2SiO4 phase is formed. After 800°C annealing in a nitrogen atmosphere, a recrystallized polycrystalline Si layer involving Zn nanoparticles is created.

Keywords

ZnO nanoparticles silicon ion implantation X-ray diffraction analysis scanning and transmission electron microscopy Auger-electron spectroscopy thermal annealing Rutherford backscattering atomic-force microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Metal Oxide Nanostructures and Their Applications, Ed. by A. Umar and Y.-B. Hahn (American Scientific Publ., Los Angeles, 2010).Google Scholar
  2. 2.
    C. Jiang, X. Sun, G. Lo, et al., Appl. Phys. Lett. 90, 263501 (2007).aCrossRefGoogle Scholar
  3. 3.
    C. Li, Y. Yang, X. Sun, et al., Nanotecnology 18, 135604 (2007).CrossRefGoogle Scholar
  4. 4.
    S. Chu, M. Olmed., Zh. Yang, et al., Appl. Phys. Lett. 93, 181106 (2008).CrossRefGoogle Scholar
  5. 5.
    G. P. Smestad and M. Gratze., J. Chem. Educ. 75, 752 (1998).CrossRefGoogle Scholar
  6. 6.
    Ch. Li, G. Beirne, G. Kamita, et al., J. Appl. Phys. 116, 114501 (2014).CrossRefGoogle Scholar
  7. 7.
    O. Eryu, K. Murakami, K. Takita, and K. Masud., Nucl. Instrum. Methods Phys. Res., Sect. B 33, 665 (1988).CrossRefGoogle Scholar
  8. 8.
    G. Zollo, M. Kalitzova, D. Manno, and G. Vital., J. Phys. D: Appl. Phys. 37, 2730 (2004).CrossRefGoogle Scholar
  9. 9.
    I. Muntele, P. Thevenard, C. Muntele, et al., Mater. Res. Soc. Symp. Proc. 829, B.2.21 (2005).Google Scholar
  10. 10.
    C. Liu, H. Zhao, Y. Shen, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 326, 23 (2014).CrossRefGoogle Scholar
  11. 11.
    V. Privezentsev, N. Tabachkova, and Yu. Lebedinskii, AIP Conf. Proc. 1583, 109 (2014).CrossRefGoogle Scholar
  12. 12.
    V. Privezentsev, A. Shemukhin, D. V. Petrov, et al., Solid State Phenom. 205–206, 502 (2014).Google Scholar
  13. 13.
    L. C. Feldman and J. W Mayer, Fundamentals of Surface and Thin Film Analysis (North Holland, Elsevier Science Publ., Amsterdam, 1986).Google Scholar
  14. 14.
    http://www.sinmra.org.Google Scholar
  15. 15.
    J. F. Ziegler and J. P. Biersack, SRIM 2008. http://www.srim.org.Google Scholar
  16. 16.
    ICDD. The International Centre for Diffraction Data. http://www.icdd.com.Google Scholar
  17. 17.
    NIST X-ray Photoelectron Spectroscopy Database. http://srdata.nist.gov/xps/.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. V. Privezentsev
    • 1
    Email author
  • V. S. Kulikauskas
    • 2
  • V. V. Zatekin
    • 2
  • K. D. Shcherbachev
    • 3
  • N. Yu. Tabachkova
    • 3
  • K. B. Eidelman
    • 3
  • S. V. Ksenich
    • 3
  • A. A. Batrakov
    • 4
  1. 1.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia
  2. 2.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  3. 3.National University of Science and Technology “MISiS”MoscowRussia
  4. 4.National Research University “MPEI”MoscowRussia

Personalised recommendations