Dimension of similarity as a characteristic of the solid-surface relief

  • V. M. Samsonov
  • I. A. Kaplunov
  • I. V. Talyzin
  • E. V. Dyakova
  • Yu. V. Kuznetsova


It is proposed that the dimension of similarity of the relief profile be used as an integral characteristic of solid-surface roughness. This parameter coincides with the fractal dimension of the line only in the case of the same length scales in the surface plane and in the direction that is normal to it. The interrelation between the dimension of similarity and the usually used fractal dimension of the relief profile is obtained and analyzed. The optical surface of single-crystal Ge is used as an example in order to reveal the correlation between the dimension of similarity of the relief surface and the transmission coefficient in the infrared range.


solid-surface roughness dimension of similarity optical surface of single-crystal Ge transmission coefficient in the IR range 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. K. Adam, The Physics and Chemistry of Surfaces (Oxford Univ. Press, London, 1941).Google Scholar
  2. 2.
    D. F. Moore, Principles and Applications of Tribology (Pergamon Press, Oxford, New York, 1975).Google Scholar
  3. 3.
    B. V. Deryagin, Dokl. Akad. Nauk SSSR 51, 357 (1946).Google Scholar
  4. 4.
    B. D. Summ and Yu. V. Goryunov, Physical and Chemical Foundations of Wetting and Spreading (Khimiya, Moscow, 1976), p. 53 [in Russian].Google Scholar
  5. 5.
    A. I. Bykhovskii, Spreading (Naukova Dumka, Kiev, 1983), p. 52 [in Russian].Google Scholar
  6. 6.
    V. M. Samsonov, V. V. Dronnikov, A. A. Volnukhina, and S. D. Muravyev, Surf. Sci. 532–535, 560 (2003).CrossRefGoogle Scholar
  7. 7.
    A. N. Zaidel’, G. V. Ostrovskaya, and Yu. I. Ostrovskii, Technique and Practice of Spectroscopy (Nauka, Moscow, 1976) [in Russian].Google Scholar
  8. 8.
    C. F. Burell and H. J. Kunze, Phys. Rev. Lett. 28, 731 (1972).Google Scholar
  9. 9.
    A. P. Ivanov, Optics of Dispersive Media (Nauka i Tekhnika, Minsk, 1969), p. 56 [in Russian].Google Scholar
  10. 10.
    V. P. Kalinushkin, in Scientific Works of General Physics Institute USSR Academy of Sciences (Nauka, Moscow, 1986), Vol. 4, p. 3 [in Russian].Google Scholar
  11. 11.
    I. A. Kaplunov, A. I. Kolesnikov, I. V. Talyzin, L. V. Sedova, and S. L. Shaiovich, Opt. Zh. 72, 76 (2005).Google Scholar
  12. 12.
    V. I. Roldugin, Usp. Khim. 72, 931 (2003).Google Scholar
  13. 13.
    B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman and Co., New York, 1982).Google Scholar
  14. 14.
    E. Feder, Fractals (Plenum Press, New York, 1988).CrossRefGoogle Scholar
  15. 15.
    Yu. V. Brylkin and A. L. Kusov, in Physical and Chemical Aspects for Studying Clusters Nanostructures and Nanomaterials. Interuniversity Collection of Scientific Works, Ed. by V. M. Samsonov and N. Yu. Sdobnyakov (Tver State Univ., Tver, 2013), Issue 5, p. 33 [in Russian].Google Scholar
  16. 16.
    B. Mandelbrot, in Fractals in Physics, Ed. by E. Tosatti and L. Pietronero (North-Holland, Amsterdam, 1986).Google Scholar
  17. 17.
    N. A. Torkhov, V. G. Bozhkov, I. V. Ivonin, and V. A. Novikov, Semiconductors 43, 33 (2009).CrossRefGoogle Scholar
  18. 18.
    Yu. I. Ukhanov, Optical Properties of Semiconductors (Nauka, Moscow, 1977) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. M. Samsonov
    • 1
  • I. A. Kaplunov
    • 1
  • I. V. Talyzin
    • 1
  • E. V. Dyakova
    • 1
  • Yu. V. Kuznetsova
    • 1
  1. 1.Tver State UniversityTverRussia

Personalised recommendations