Advertisement

Investigation into the structure and features of the coalescence of differently shaped metal nanoclusters

  • A. Yu. Kolosov
  • N. Yu. SdobnyakovEmail author
  • V. S. Myasnichenko
  • D. N. Sokolov
Article

Abstract

The coalescence of gold and copper nanoparticles subjected to gradual heating is simulated by means of the Monte Carlo method. The interaction of nanoparticles is described using the Gupta many-body potential. It is found that the nanoparticle shape substantially affects both the melting point and the coalescence process as a whole. Moreover, there is no coalescence at all at some distances between nanoparticles in the initial configuration. The optimal parameters for creating metal nanocontacts sandwiched between nanoscale-bus tracks are determined. The obtained stable structure of nanoscale contacts is analyzed.

Keywords

coalescence gold nanoparticles copper nanoparticles Monte Carlo method Gupta many-body potential phase transition neck nanocontact 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. L. Klavsyuk, S. V. Kolesnikov, A. M. Smelova, et al., Phys. Solid State 53 (11), 2356 (2011).CrossRefGoogle Scholar
  2. 2.
    A. L. Klavsyuk, S. V. Kolesnikov, A. M. Smelova, et al., JETP Lett. 91 (3), 158 (2010).CrossRefGoogle Scholar
  3. 3.
    E. M. Smelova, K. M. Tsysar’, and D. I. Bazhanov, JETP Lett. 93 (3), 29 (2011).Google Scholar
  4. 4.
    Y.-K. Lan, C.-H. Su, W.-H. Sun, et al., RSC Adv. 4 (27), 13768 (2014).CrossRefGoogle Scholar
  5. 5.
    G. J. Li, Q. Wang, H. T. Li, et al., Chin. Phys. B 17 (9), 3343 (2008).CrossRefGoogle Scholar
  6. 6.
    H. Y. Kim, S. H. Lee, H. G. Kim, et al., Mater. Trans. 48 (3), 455 (2007).CrossRefGoogle Scholar
  7. 7.
    R. P. Gupta, Phys. Rev. B: Condens. Matter Mater. Phys. 23 (12), 6265 (1981).CrossRefGoogle Scholar
  8. 8.
    D. N. Sokolov, P. V. Komarov, and N. Yu. Sdobnyakov, Phys. Met. Metallogr. 111 (1), 13 (2011).CrossRefGoogle Scholar
  9. 9.
    N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, et al. J. Chem. Phys. 21 (16), 1087 (1953).Google Scholar
  10. 10.
    X. Yu and P. M. Duxbury, Phys. Rev. B: Condens. Matter Mater. Phys. 52 (3), 2102 (1995).CrossRefGoogle Scholar
  11. 11.
    N. Yu. Sdobnyakov, S. V. Repchak, V. M. Samsonov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5, 508 (2011).CrossRefGoogle Scholar
  12. 12.
    N. Yu. Sdobnyakov, D. N. Sokolov, A. N. Bazulev, et al., Russ. Metall. (Engl. Transl.), No. 2, 100 (2012).Google Scholar
  13. 13.
    A. Yu. Kolosov, N. Yu. Sdobnyakov, P. V. Komarov, et al., in Physical and Chemical Aspects of the Study of Clusters, Nanostructures, and Nanomaterials: Collection of Papers, Ed. by V. M. Samsonov and N. Yu. Sdobnyakov (Tver. Gos. Univ., Tver, 2012), No. 4, p. 129 [in Russian].Google Scholar
  14. 14.
    D. N. Sokolov, N. Yu. Sdobnyakov, and P. V. Komarov, Vestn. Tver. Gos. Univ., Ser. Fiz., No. 16, 54 (2012).Google Scholar
  15. 15.
    N. Yu. Sdobnyakov, D. N. Sokolov, V. M. Samsonov, et al., Russ. Metall. (Engl. Transl.), No. 3, 209 (2012).CrossRefGoogle Scholar
  16. 16.
    A. E. Bandin and S. A. Beznosyuk, Izv. Altaisk. Gos. Univ., Nos. 2–3, 127 (2011).Google Scholar
  17. 17.
    P. V. Komarov, L. V. Zherenkova, and P. G. Khalatur, J. Chem. Phys. 128 (15), 124909 (2008).CrossRefGoogle Scholar
  18. 18.
    A. N. Bazulev, V. M. Samsonov, and N. Yu. Sdobnyakov, Russ. J.Phys. Chem., A 76 (11), 1872 (2002).Google Scholar
  19. 19.
    V. M. Samsonov and N. Yu. Sdobnyakov, Cent. Eur. J. Phys. 1 (2), 344 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. Yu. Kolosov
    • 1
  • N. Yu. Sdobnyakov
    • 1
    Email author
  • V. S. Myasnichenko
    • 1
  • D. N. Sokolov
    • 1
  1. 1.Tver State UniversityTverRussia

Personalised recommendations