Advertisement

Quantum chemical simulations of titanium dioxide nanotubes used for photocatalytic water splitting

  • O. Lisovski
  • S. Piskunov
  • Yu. F. Zhukovskii
  • D. BocharovEmail author
Article

Abstract

Titanium dioxide nanotubes (NTs) built from various initial 2D models of TiO2 (a promising catalyst for water splitting) are investigated via density functional theory using the B3LYP hybrid exchange-correlation functional in the localized basis set of a linear combination of atomic orbitals. For TiO2 NTs (eight different types of morphology) created from four initial 2D structures, full geometry optimization is performed and the main energy parameters, such as the band gap width, energy positions of the valence band top and the conduction band bottom, and NT formation and strain energy, are calculated. Analysis of the NT strain and formation energies enables us to choose their most stable configuration, which can further be employed to simulate NTs doped with impurity atoms capable of serving as efficient centers for the photocatalytic dissociation of water molecules.

Keywords

titanium dioxide nanotubes quantum-chemical simulation density-functional-theory methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Hara, M. Yoshimizu, S. Tanigawa, L. Ni, B. Ohtani, H. Irie, J. Phys. Chem. C 116 (33), 17458 (2012).CrossRefGoogle Scholar
  2. 2.
    Y.-C. Nah, I. Paramasivam, and P. Schmuki, Chem. Phys. Chem. 11, 2698 (2010).Google Scholar
  3. 3.
    M. Niu, D. Cheng, and D. Cao, Int. J. Hydrogen Energy 38, 1251 (2013).CrossRefGoogle Scholar
  4. 4.
    C. Das, P. Roy, M. Yang, H. Jha, and P. Schmuki, Nanoscale 3 (8), 3094 (2011).CrossRefGoogle Scholar
  5. 5.
    A. G. R. Morales, O. Concha, C. C. Arteaga, and F. Aut, Corros. Rev. 29, 105 (2011).Google Scholar
  6. 6.
    F. M. Hossain, A. V. Evteev, I. V. Belova, J. Nowotny, and G. E. Murch, Adv. Appl. Ceram. 111 (1–2), 72 (2012).CrossRefGoogle Scholar
  7. 7.
    W. F. Huang, P. J. Wu, W. C. Hsu, C. W. Wu, K. S. Liang, and M. C. Lin, J. Theor. Comput. Chem. 12 (3), 1350007 (2013).CrossRefGoogle Scholar
  8. 8.
    R. Dovesi, V. R. Saunders, C. Roetti, et al., CRYSTAL’ 09 User’s Manual (Univ. Torino, Torino, 2009).Google Scholar
  9. 9.
    O. Lisovski, S. Piskunov, Yu. F. Zhukovskii, and J. Ozolins, IOP Conf. Ser.: Mater. Sci. Eng. 38, 012057 (2012).CrossRefGoogle Scholar
  10. 10.
    S. Piskunov, E. Heifets, R. Eglitis, and G. Borstel, Comput. Mater. Sci. 29 (2), 165 (2004).CrossRefGoogle Scholar
  11. 11.
    R. A. Evarestov, Yu. F. Zhukovskii, A. V. Bandura, and S. Piskunov, J. Phys. Chem. C 114 (49), 21061 (2010).CrossRefGoogle Scholar
  12. 12.
    R. A. Evarestov, Yu. F. Zhukovskii, A. V. Bandura, and S. Piskunov, Cent. Eur._J. Phys. 9 (2), 492 (2011).Google Scholar
  13. 13.
    A. M. Ferrari, D. Szieberth, C. M. Zicovich-Wilson, and R. Demichelis, J. Phys. Chem. Lett. 1 (19), 2854 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. Lisovski
    • 1
  • S. Piskunov
    • 1
  • Yu. F. Zhukovskii
    • 1
  • D. Bocharov
    • 1
    • 2
    Email author
  1. 1.University of Latvia, Institute of Solid State PhysicsRigaLatvia
  2. 2.Transport and Telecommunication InstituteRigaLatvia

Personalised recommendations