Erosion of carbon nanotube-based polymer nanocomposites exposed to oxygen plasma

  • L. S. Novikov
  • E. N. Voronina
  • V. N. Chernik
  • N. G. Chechenin
  • A. V. Makunin
  • E. A. Vorobieva
Article

Abstract

We present the results of the simulation tests of samples of polymer nanocomposites based on carbon nanotubes for resistance to oxygen plasma in the Earth’s upper atmosphere. Data on the weight loss of the samples, the results of analysis of their surface structure after irradiation, and data on arrays of carbon nanotubes damaged under the effect of oxygen plasma are given. Possible mechanisms of destruction of the nanotubes are discussed.

Keywords

nanocomposites carbon nanotubes oxygen plasma exposure erosion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Space Model, Ed. by L. S. Novikov (Knizhn. Dom Univ., Moscow, 2007) Vol. 2 [in Russian].Google Scholar
  2. 2.
    L. S. Novikov, Radiat. Meas. 30, 661 (1999).CrossRefGoogle Scholar
  3. 3.
    J. Baur and E. Silverman, Mater. Res. Soc. Bull. 32, 328 (2007).CrossRefGoogle Scholar
  4. 4.
    K. B. Vernigorov, A. Yu. Alent’ev, A. M. Muzafarov, L. S. Novikov, and V. N. Chernik, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5 (2), 263 (2011).CrossRefGoogle Scholar
  5. 5.
    E. N. Voronina, L. S. Novikov, V. N. Chernik, N. P. Chirskaya, K. B. Vernigorov, G. G. Bondarenko, and A. I. Gaidar, Inorg. Mater.: Appl. Res. 3 (2), 95 (2012).CrossRefGoogle Scholar
  6. 6.
    N. G. Chechenin, P. N. Chernykh, E. A. Vorobyeva, and O. S. Timofeev, Appl. Surf. Sci. 275, 217 (2013).CrossRefGoogle Scholar
  7. 7.
    V. N. Chernik, in Proc. 7th Int. Symp. Mater. in Space Environment (Toulouse, 1997), 237.Google Scholar
  8. 8.
    B. Delley, J. Chem. Phys. 113, 7756 (2000).CrossRefGoogle Scholar
  9. 9.
    Vl. V. Voevodin, S. A. Zhumatiy, S. I. Sobolev, A. S. Antonov, P. A. Bryzgalov, D. A. Nikitenko, K. S. Stefanov, and Vad. V. Voevodin, Open Systems J., Moscow: Open Systems Publ., No. 7, 36 (2012).Google Scholar
  10. 10.
    K. B. Vernigorov, A. A. Chugunova, A. Yu. Alent’ev, I. B. Meshkov, A. M. Muzafarov, L. S. Novikov, and V. N. Chernik, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6 (5), 760 (2012).CrossRefGoogle Scholar
  11. 11.
    A. Felten, C. Bittencourt, J.-J. Pireaux, G. Van Lier, and J. C. Charlier, J. Appl. Phys. 98, 074308 (2005).CrossRefGoogle Scholar
  12. 12.
    A. Barinov, L. Gregoratti, and P. Dudin, S. La Rosa, and M. Kiskinova, Adv. Mater. 21, 1916 (2009).CrossRefGoogle Scholar
  13. 13.
    D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Nature 458, 872 (2009).CrossRefGoogle Scholar
  14. 14.
    Y. Guo, L. Jiang, and W. Guo, Phys. Rev. B: Condens. Matter Mater. Phys. 82, 115440 (2010).CrossRefGoogle Scholar
  15. 15.
    N. L. Rangel, J. C. Sotelo, and J. M. Seminario, J. Chem. Phys. 131, 031105 (2009).CrossRefGoogle Scholar
  16. 16.
    E. N. Voronina and L. S. Novikov, RSC Adv. 3 (35), 15362 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • L. S. Novikov
    • 1
    • 2
  • E. N. Voronina
    • 1
  • V. N. Chernik
    • 1
  • N. G. Chechenin
    • 1
  • A. V. Makunin
    • 1
  • E. A. Vorobieva
    • 1
  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  2. 2.National Research University “Higher School of Economics”MoscowRussia

Personalised recommendations