Advertisement

Formation of nanoparticles containing zinc in Si(001) by ion-beam implantation and subsequent annealing

  • K. B. EidelmanEmail author
  • K. D. Shcherbachev
  • N. Yu. Tabachkova
  • V. V. Privezentsev
Article

Abstract

The formation of nanoparticles containing zinc in Si(001) substrates by the implantation of 64Zn+ ions and subsequent annealing in dry oxygen at 800 and 1000°C for 1 h is studied. The structure of the samples is studied by high-resolution transmission electron microscopy, X-ray diffraction, and photoluminescence spectroscopy. 20-nm zinc nanoparticles located at a depth of about 50 nm are revealed in the as-implanted sample. 10–20-nm pores are observed in the surface layer. Annealing leads to oxidation of the Zn nanoparticles to the Zn2SiO4 state. It is shown that the oxidation of Zn nanoparticles begins on their surface and at an annealing temperature of 800°C results in the formation of nanoparticles with the “соre–shell” structure. The X-ray diffraction technique shows simultaneously two Zn and Zn2SiO4 phases. ZnO nanoparticles are not formed under the given implantation and annealing conditions.

Keywords

Zn nanoparticles ion implantation phase formation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.-C. Chin, C.-Y. Chi, Y.-C. Lu, L. Hong, Yu-Li. Lin, F.-Yi. Jen, C. C. Yang, B.-P. Zhang, Y. Segawa, K.-J. Ma, and J.-R. Yang, J. Cryst. Growth 293, 344 (2006).CrossRefGoogle Scholar
  2. 2.
    D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).CrossRefGoogle Scholar
  3. 3.
    A. Meldrum, R. F. Jr. Haglund, L. A. Boatner, and C. W. White, Adv. Mater. 13, 1431 (2001).CrossRefGoogle Scholar
  4. 4.
    G. De, L. Tapfer, M. Catalano, G. Battaglin, F. Condlla, P. Mazzoldi, and R. F. Haglund, Appl. Phys. Lett. 68, 3820 (1996).CrossRefGoogle Scholar
  5. 5.
    U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, and S. J. Cho, H. J. Morkoc, Appl. Phys. 98, 041301 (2005).CrossRefGoogle Scholar
  6. 6.
    S. Chu, M. Olmedo, Z. Yang, J. Y. Kong, and J. L. Liu, Appl. Phys. Lett. 93, 181106 (2008).CrossRefGoogle Scholar
  7. 7.
    Z. L. Wang and J. H. Song, Science (Washington, DC, U. S.) 312, 242 (2006).CrossRefGoogle Scholar
  8. 8.
    X. G. San, G. S. Wang, B. Liang, Y. M. Song, S. Y. Gao, J. S. Zhang, and F. L. Meng, J. Alloys Compd. 622, 73 (2015).CrossRefGoogle Scholar
  9. 9.
    K. C. Sekhar, K. Kamakshi, S. Bernstorff, and M. J. M. Gomes, J. Alloys Compd. 619, 248 (2015).CrossRefGoogle Scholar
  10. 10.
    L. Dallali, S. Jaziri, J. Haskouri, P. Amoros, and J. Martinez-Pastor, Solid State Commun. 151, 822 (2011).CrossRefGoogle Scholar
  11. 11.
    S. L. Cho, J. Ma, Y. K. Kim, Y. Sun, G. K. L. Wong, and J. B. Ketterson, Appl. Phys. Lett. 75, 2761 (1999).CrossRefGoogle Scholar
  12. 12.
    K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).CrossRefGoogle Scholar
  13. 13.
    K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Appl. Phys. Lett. 68, 403 (1996).CrossRefGoogle Scholar
  14. 14.
    I. Muntele, P. Thevenard, C. Muntele, B. Chhay, and D. Ila, Mater. Res. Soc. Symp. Proc. 829, B.2.21 (2005).Google Scholar
  15. 15.
    X. L. Xu, C. X. Guo, Z. M. Qi, H. T. Liu, J. Xu, C. S. Shi, C. Chong, W. H. Huang, Y. J. Zhou, and C. M. Xu, Chem. Phys. Lett. 364, 57 (2002).CrossRefGoogle Scholar
  16. 16.
    P. Zhan, W. P. Wang, C. Liu, Y. Hu, Z. C. Li, Z. J. Zhang, P. Zhang, B. Y. Wang, and X. Z. Cao, J. Appl. Phys. 111, 033501 (2012).CrossRefGoogle Scholar
  17. 17.
    T. Ohtake, K. Ohkawa, N. Sonoyama, and T. Sakata, J. Alloys Compd. 421, 163 (2006).CrossRefGoogle Scholar
  18. 18.
    S. Z. Karazhanov, P. Ravindran, H. Fjellvag, and B. G. Svensson, J. Appl. Phys. 106, 123701 (2009).CrossRefGoogle Scholar
  19. 19.
    M. Cich, K. Kim, H. Choi, and S. T. Hwang, Appl. Phys. Lett. 73, 2116 (1998).CrossRefGoogle Scholar
  20. 20.
    Z. M. Xu and Y. X. Wang, J. Alloys Compd. 555, 268 (2013).CrossRefGoogle Scholar
  21. 21.
    A. L. Stepanov and I. B. Khaibullin, Rev. Adv. Mater. Sci. 9, 109 (2005).Google Scholar
  22. 22.
    Y. Y. Shen, X. Li, Z. Wang, L. L. Zhang, D. C. Zhang, M. K. Li, B. Yuan, Z. D. Li, and C. L. Liu, J. Cryst. Growth 311, 4605 (2009).CrossRefGoogle Scholar
  23. 23.
    H. Amekura, N. Umeda, Y. Sakuma, O. A. Plaksin, Y. Takeda, N. Kishimoto, and Ch. Buchal, Appl. Phys. Lett. 88, 153119 (2006).CrossRefGoogle Scholar
  24. 24.
    W. L. Brown and A. Ourmazd, Mater. Res. Soc. Bull. 17 (6), 30 (1992).Google Scholar
  25. 25.
    SRIM, http://www.srim.org.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • K. B. Eidelman
    • 1
    Email author
  • K. D. Shcherbachev
    • 1
  • N. Yu. Tabachkova
    • 1
  • V. V. Privezentsev
    • 2
  1. 1.National University of Science and Technology “MISIS”MoscowRussia
  2. 2.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia

Personalised recommendations