On the use of a composite moderator at the IBR-2 reactor: Advantages for the neutron-diffraction texture analysis of rocks

  • M. V. Bulavin
  • R. N. Vasin
  • S. A. Kulikov
  • T. Lokaichek
  • D. M. Levin
Article

Abstract

A unique cold moderator based on a mixture of mesitylene and m-xylene is developed for the IBR-2 pulsed reactor. If combined with a standard warm-water moderator, it provides a high neutron flux in a wide wavelength range. The advantages of the use of this composite moderator in neutron-diffraction texture analysis are discussed using the example of a sample of slate (formed from five minerals) studied using the SKAT diffractometer. The diffraction data obtained in experiments with warm-water and composite moderators are compared.

Keywords

cold moderator neutron-diffraction texture analysis phase analysis Rietveld method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.-R. Wenk, J. Mater 64 (1), 127 (2012).Google Scholar
  2. 2.
    A. N. Nikitin and T. I. Ivankina, Fiz. Elem. Chastits At. Yadra 35 (2), 347 (2004).Google Scholar
  3. 3.
    H.-R. Wenk, R. N. Vasin, H. Kern, S. Matthies, S. C. Vogel, and T. I. Ivankina, Tectonophysics 570–571, 123 (2012).CrossRefGoogle Scholar
  4. 4.
    Yu. G. Dragunov, I. T. Tret’yakov, A. V. Lopatkin, N. V. Romanova, I. B. Lukasevich, V. D. Anan’ev, A. V. Vinogradov, A. V. Dolgikh, L. V. Edunov, Yu. N. Pepelyshev, A. D. Rogov, E. P. Shabalin, A. A. Zaikin, and I. S. Golovnin, At. Energ. 113 (1), 29 (2012).CrossRefGoogle Scholar
  5. 5.
    V. D. Anan’ev, A. A. Belyakov, M. B. Bulavin, A. E. Verkhoglyadov, C. A. Kulikov, K. A. Mukhin, and E. P. Shabalin, Tech. Phys. 59 (2), 283 (2014).CrossRefGoogle Scholar
  6. 6.
    S. Kulikov and E. Shabalin, Rom. J. Phys. 54 (3–4), 361 (2009).Google Scholar
  7. 7.
    R. D. Taylor and J. E. Kilpatrick, J. Chem. Phys. 23 (7), 1232 (1955).CrossRefGoogle Scholar
  8. 8.
    K. Uenlue, T. L. Bauer, and B. W. Wehring, Trans. Am. Nucl. Soc. 65 (3–4), 135 (1992).Google Scholar
  9. 9.
    E. Shabalin, E. Kulagin, S. Kulikov, and V. Melikhov, Radiat. Phys. Chem. 67, 315 (2003).CrossRefGoogle Scholar
  10. 10.
    E. Shabalin, S. Kulikov, V. Melikhov, and E. Kulagin, in Proceedings of the 16th Meeting of the International Collaboration on Advanced Neutron Sources (Düsseldorf-Neuss, 2003), p.911.Google Scholar
  11. 11.
    J. M. Carpenter, Nature 330, 358 (1987).CrossRefGoogle Scholar
  12. 12.
    E. P. Shabalin, “On the phenomenon of the fast release of energy in irradiated solid methane: discussion of models considering the local space distribution of energy,” in Soobshch. Ob’edin. Inst. Yad. Issled., Dubna (Dubna, 1995), E17-95-142.Google Scholar
  13. 13.
    L. Cher, in Proceedings of the 14th Meeting of the Internatioa Collaboration on Advanced Neutron Sources (Starved Rock, Illinois, 1998), Vol. 2, p. 241Google Scholar
  14. 14.
    S. Ya. Pshezhetskii, Mechanism and Kinetics of Radiation-Chemical Reactions (Khimiya, Moscow, 1968) [in Russian].Google Scholar
  15. 15.
    K. Inoue, H. Iwasa, and Y. Kiyanagi, J. At. Energy Soc. Jpn. 21 (11), 865 (1979).CrossRefGoogle Scholar
  16. 16.
    M. Utsuro, J. Phys. C: Solid State Phys. 9, 171 (1976).CrossRefGoogle Scholar
  17. 17.
    I. Natkaniec and K. Holderna-Natkaniec, in Proceedings of the 6th International Workshop on Advanced Cold Moderators, Matter and Materials (Jülich, 2004), Vol. 20, p.103.Google Scholar
  18. 18.
    I. Natkaniec, K. Holderna-Natkaniec, and J. Kalus, Phys. B (Amsterdam, Neth.) 350 (1–3), E651 (2004).CrossRefGoogle Scholar
  19. 19.
    M. Utsuro, M. Sugimoto, and Y. Fujita, Ann. Rep. Res. Reactor Inst., Kyoto Univ. 8, 17 (1975).Google Scholar
  20. 20.
    V. Ananiev, A. Belyakov, M. Bulavin, E. Kulagin, S. Kulikov, K. Mukhin, T. Petukhova, A. Sirotin, D. Shabalin, E. Shabalin, V. Shirokov, and A. Verhoglyadov, Nucl. Instrum. Methods Phys. Res., Sect. B 320, 70 (2014).CrossRefGoogle Scholar
  21. 21.
    K. Ullemeyer, P. Spalthoff, J. Heinitz, N. N. Isakov, A. N. Nikitin, and K. Weber, Nucl. Instrum. Methods Phys. Res., Sect. A 412 (1), 80 (1998).CrossRefGoogle Scholar
  22. 22.
    R. Keppler, K. Ullemeyer, J. H. Behrmann, and M. Stipp, J. Appl. Crystallogr. 47 (5), 1520 (2014).CrossRefGoogle Scholar
  23. 23.
    H. M. Rietveld, J. Appl. Crystallogr. 2 (2), 65 (1969).CrossRefGoogle Scholar
  24. 24.
    L. Lutterotti, S. Matthies, H.-R. Wenk, A. S. Schultz, and J. W. Richardson, J. Appl. Phys. 81 (2), 594 (1997).CrossRefGoogle Scholar
  25. 25.
    H.-R. Wenk, L. Lutterotti, and S. C. Vogel, Powder Diffr. 25 (3), 283 (2010).CrossRefGoogle Scholar
  26. 26.
    A. C. Larson and R. B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 (2004).Google Scholar
  27. 27.
    R. T. Downs, R. M. Hazen, and L. W. Finger, Am. Mineral. 79, 1042 (1994).Google Scholar
  28. 28.
    S. A. Markgraf and R. J. Reeder, Am. Mineral. 70, 590 (1985).Google Scholar
  29. 29.
    S. M. Antao, I. Hassan, J. Wang, P. L. Lee, and B. H. Toby, Can. Mineral. 46, 1501 (2008).CrossRefGoogle Scholar
  30. 30.
    P. F. Zanazzi, P. Comodi, S. Nazzareni, and G. B. Andreozzi, Eur. J. Mineral. 21, 581 (2000).CrossRefGoogle Scholar
  31. 31.
    M. Catti, G. Ferraris, S. Hull, and A. Pavese, Eur. J. Mineral. 6, 171 (1994).CrossRefGoogle Scholar
  32. 32.
    S. Matthies and H.-R. Wenk, J. Appl. Crystallogr. 42, 564 (2009).CrossRefGoogle Scholar
  33. 33.
    S. Matthies, Mater. Sci. Forum 408–412, 95 (2002).CrossRefGoogle Scholar
  34. 34.
    L. Lutterotti, D. Chateigner, S. Ferrari, and J. Ricote, Thin Solid Films 450, 34 (2004).CrossRefGoogle Scholar
  35. 35.
    L. Lutterotti, R. N. Vasin, and H.-R. Wenk, Powder Diffr. 29 (1), 76 (2014).CrossRefGoogle Scholar
  36. 36.
    H.-R. Wenk, S. Matthies, J. Donovan, and D. Chateigner, J. Appl. Crystallogr. 31, 262 (1998).CrossRefGoogle Scholar
  37. 37.
    B. Toby, Powder Diffr. 21 (1), 67 (2006).CrossRefGoogle Scholar
  38. 38.
    S. Matthies, H.-R. Wenk, and G. W. Vinel, J. Appl. Crystallogr. 21, 285 (1988).CrossRefGoogle Scholar
  39. 39.
    A. N. Nikitin, T. I. Ivankina, K. Ullemaier, and R. N. Vasin, Crystallogr. Rep. 53 (5), 812 (2008).CrossRefGoogle Scholar
  40. 40.
    H.-J. Bunge, Texture Analysis in Materials Science: Mathematical Methods (Butterworths, London, 1982).Google Scholar
  41. 41.
    R. N. Vasin, H.-R. Wenk, W. Kanitpanyacharoen, S. Matthies, and R. Wirth, J. Geophys. Res.: Solid Earth 118, 3931 (2013).CrossRefGoogle Scholar
  42. 42.
    H.-R. Wenk, L. Lutterotti, and S. Vogel, Nucl. Instrum. Methods Phys. Res., Sect. A 515 (3), 575 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • M. V. Bulavin
    • 1
  • R. N. Vasin
    • 1
  • S. A. Kulikov
    • 1
  • T. Lokaichek
    • 2
  • D. M. Levin
    • 3
  1. 1.Frank Laboratory of Neutron PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  2. 2.Institute of GeologyCzech Academy of SciencesPragueCzech Republic
  3. 3.Tula State UniversityTulaRussia

Personalised recommendations