Advertisement

Neutron diffractometer for real-time studies of transient processes at the IBR-2 pulsed reactor

  • A. M. Balagurov
  • A. I. Beskrovnyy
  • V. V. Zhuravlev
  • G. M. Mironova
  • I. A. Bobrikov
  • D. Neov
  • S. G. Sheverev
Article

Abstract

A specialized diffractometer intended for use in studying real-time transient processes in condensed media, which also allows the recording of Bragg diffraction and small-angle neutron scattering spectra, has been created at the Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research. Frequently, only the given formulation of the experiment with the continuous recording of information on the process enables us to obtain data required for the correct interpretation of events. One of the crucial parameters of such experiments is the minimal time interval in which sufficient statistics can be acquired. The diffractometer parameters make it possible to measure diffraction and small-angle spectra within minute and even second (for certain types of transition processes) ranges. The possibilities of neutron scattering are discussed as applied to the study of transient processes, the diffractometer design is described, and its main characteristics and the test experiment results are presented.

Keywords

transient processes in condensed matter pulsed reactor neutron real-time diffractometer Bragg diffraction small-angle neutron scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Balagurov and G. M. Mironova, Kristallografiya 36, 314 (1991).Google Scholar
  2. 2.
    A. M. Balagurov and G. M. Mironova, in Kratk. Soobshch. Ob”edin. Inst. Yad. Issled., Dubna (Dubna, 1988), 19–86, p. 50.Google Scholar
  3. 3.
    A. M. Balagurov, V. I. Gordelii, and L. S. Yaguzhinskii, Biofizika 31, 1004 (1986).Google Scholar
  4. 4.
    A. M. Balagurov and G. M. Mironova, Sverkhprovodimost: Fiz., Khim., Tekh. 3, 545 (1990).Google Scholar
  5. 5.
    A. M. Balagurov, G. M. Mironova, L. A. Rudnickij, and V. Yu. Galkin, Phys. C (Amsterdam, Neth.) 172, 331 (1990).CrossRefGoogle Scholar
  6. 6.
    A. M. Balagurov, I. O. Bashkin, A. I. Kolesnikov, V. Yu. Malyshev, G. M. Mironova, E. G. Ponyatovskii, and V. K. Fedotov, Solid State Phys. 33, 1256 (1991).Google Scholar
  7. 7.
    A. M. Balagurov, O. I. Barkalov, A. I. Kolesnikov, G.M. Mironova, E. G. Ponyatovskii, V. V. Sinitsyn, and V. K. Fedotov, Pis’ma Zh. Eksp. Teor. Fiz. 53, 30 (1991).Google Scholar
  8. 8.
    A. M. Balagurov, G. M. Mironova, V. E. Novozchilov, A. I. Ostrovnoy, V. G. Simkin, and V. B. Zlokazov, J. Appl. Crystallogr. 24, 1009 (1991).CrossRefGoogle Scholar
  9. 9.
    A. M. Balagurov and G. M. Mironova, Mater. Sci. Forum 133–136, 397 (1993).CrossRefGoogle Scholar
  10. 10.
    A. M. Balagurov, Poverkhnost 7, 123 (1997).Google Scholar
  11. 11.
    N. Yu. Ryabova, M. A. Kiselev, A. I. Beskrovnyi, and A. M. Balagurov, Phys. Solid State 52, 1050 (2010).CrossRefGoogle Scholar
  12. 12.
    I. A. Bobrikov, A. M. Balagurov, Hu Chih-Wei, Lee Chih-Hao, Chen Tsan-Yao, Deleg Sangaa, and D. A. Balagurov, J. Power Sources 258, 356 (2014).CrossRefGoogle Scholar
  13. 13.
    G. M. Mironova, in Soobshch. Ob”edin. Inst. Yad. Issled., Dubna (Dubna, 1988), R13-88-326.Google Scholar
  14. 14.
    V. L. Aksenov, Usp. Fiz. Nauk 179, 434 (2009).CrossRefGoogle Scholar
  15. 15.
    A. V. Belushkin, A. A. Bogdzel’, V. V. Zhuravlev, S. A. Kutuzov, F. V. Levchanovski, E. I. Litvinenko, Li Yong Jai, Ts. Ts. Panteleev, V. I. Prikhod’ko, A. N. Chernikov, A. V. Churakov, and V. N. Shvetsov, Phys. Solid State 52, 1025 (2010).CrossRefGoogle Scholar
  16. 16.
    S. Ikeda and J. M. Carpenter, Nucl. Instrum. Methods Phys. Res., Sect. A 239, 536 (1985).CrossRefGoogle Scholar
  17. 17.
    V. B. Zlokazov and V. V. Chernyshev, J. Appl. Crystallogr. 25, 447 (1992).CrossRefGoogle Scholar
  18. 18.
    F. V. Levchanovski, B. Gebauer, E. I. Litvinenko, A. S. Nikiforov, V. I. Prikhodko, Ch. Schulz, and Th. Wilpert, Nucl. Instrum. Methods Phys. Res., Sect. A 529, 413 (2004).CrossRefGoogle Scholar
  19. 19.
    F. V. Levchanovski, E. I. Litvinenko, A. S. Nikiforov, B. Gebauer, Ch. Schulz, and Th. Wilpert, Nucl. Instrum. Methods Phys. Res., Sect. A 569, 900 (2006).CrossRefGoogle Scholar
  20. 20.
    S. M. Murashkevich and F. V. Levchanovski, in Proceedings of the XXIV International Symposium on Nuclear Electronics and Computing, Varna, Bulgaria, 2013 (Ob’edin. Inst. Yad. Issled., Dubna, 2013), p. 176.Google Scholar
  21. 21.
    S. A. Kutuzov, A. A. Bogdzel’, D. A. Balagurov, and G. M. Mironova, in Soobshch. Ob’edin. Inst. Yad. Issled., Dubna (Dubna, 2009), R13-2009-140.Google Scholar
  22. 22.
    A. P. Sirotin, V. K. Shirokov, A. S. Kirilov, and T. B. Petukhova, Proceedings of the XXIV International Symposium on Nuclear Electronics & Computing, Varna, Bulgaria, 2013 (Ob’edin. Inst. Yad. Issled., Dubna, 2013), p. 236Google Scholar
  23. 23.
    Sonix. http://sonix.jinr.ru/wiki/doku.php?id=ru:indexGoogle Scholar
  24. 24.
    E. B. Askerov, A. I. Madadzada, A. I. Beskrovnyi, D. I. Ismailov, R. N. Mekhdieva, S. G. Dzhabarov, E. M. Kerimova, and D. Neov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 8 (6), 1193 (2014).CrossRefGoogle Scholar
  25. 25.
    E. B. Askerov, N. T. Dang, A. I. Beskrovnyi, A. I. Madadzada, D. I. Ismailov, R. N. Mekhdieva, S.G. Dzhabarov, and E. M. Kerimova, Fiz. Tekh. Poluprovodn. (S.-Peterburg) 49, 889 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. M. Balagurov
    • 1
  • A. I. Beskrovnyy
    • 1
  • V. V. Zhuravlev
    • 1
  • G. M. Mironova
    • 1
  • I. A. Bobrikov
    • 1
  • D. Neov
    • 1
  • S. G. Sheverev
    • 1
  1. 1.Frank Laboratory of Neutron PhysicsJoint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations