Effect of recoil atoms on radiation-defect formation in semiconductors under 1–10-MeV proton irradiation

  • V. V. KozlovskiEmail author
  • A. E. Vasil’ev
  • A. A. Lebedev


The formation of radiation defects in Si under 1–10-MeV proton bombardment is analyzed. Numerical simulation is carried out, and histograms of the distribution of the energy transferred to recoil atoms are obtained. Two energy ranges are considered when analyzing the histograms. Single Frenkel pairs with closely located components are produced in the first range (small energies). Recoil atoms of the second range have an energy sufficient for the production of a displacement cascade. As a result, nanoscale regions with high densities of vacancies and different types of their complexes appear. In addition, as the energy of the primary knocked-out atoms increases, the average distance between genetically related Frenkel pairs increases, and, as a consequence, the fraction of pairs that are not recombined under bombardment increases.


proton bombardment Rutherford scattering radiation defect recoil atom Frenkel pair silicon silicon carbide divacancy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Corbett and J. C. Bourgoin, Point Defects in Solids, Vol. 2: Semiconductors and Molecular Crystals, Ed. by J. H. Crawford and L. M. Slifkin (Plenum, New York, London, 1975).Google Scholar
  2. 2.
    E. Holmström, A. Kuronen, and K. Nordlund, Phys. Rev. B: Condens. Matter Mater. Phys. 78, 045202 (2008).CrossRefGoogle Scholar
  3. 3.
    G. J. Dienes and G. H. Vineyard, Radiation Effects in Solids (Interscience, New York, 1957).Google Scholar
  4. 4.
    V. Kozlovski and V. Abrosimova, Int. J. High Speed Electron. Syst. 15 (1), 1 (2005).CrossRefGoogle Scholar
  5. 5.
    C. Claeys and E. Simoen, Radiation Effects in Advanced Semiconductor Materials and Devices (Springer, Berlin, 2002).CrossRefGoogle Scholar
  6. 6.
    A. Holmes-Siedle and L. Adams, Handbook of Radiation Effects (Oxford University Press, Oxford, 1993).Google Scholar
  7. 7.
    V. V. Kozlovskii, A. E. Vasil’ev, and A. A. Lebedev, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 9, 231 (2015).CrossRefGoogle Scholar
  8. 8.
    J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar
  9. 9.
    G. H. Kinchin and R. S. Pease, Rep. Prog. Phys. 18, 1 (1955).CrossRefGoogle Scholar
  10. 10.
    V. V. Emtsev, G. A. Oganesyan, N. V. Abrosimov, et al., Solid State Phenom. 205–206, 422 (2014).Google Scholar
  11. 11.
    D. V. Davydov, A. A. Lebedev, V. V. Kozlovski, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 308, 641 (2001).Google Scholar
  12. 12.
    A. A. Lebedev, A. I. Veinger, D. V. Davydov, et al., Semiconductors 34 (8), 861 (2000).CrossRefGoogle Scholar
  13. 13.
    N. Yu. Arutyunov, M. Elsayed, R. C. Krause-Rehberg, et al., Solid State Phenom. 205–206, 317 (2014).Google Scholar
  14. 14.
    V. V. Emtsev, N. V. Abrosimov, V. V. Kozlovski, et al., Semiconductors 48 (11), 1438 (2014).CrossRefGoogle Scholar
  15. 15.
    S. J. Taylor, M. Yamaguchi, T. Yamaguchi, et al., J. Appl. Phys. 83 (9), 4620 (1998).CrossRefGoogle Scholar
  16. 16.
    A. Ionascut-Nedelcescu, C. Carlone, A. Houdayer, et al., IEEE Trans. Nucl. Sci. 49 (6), 2733 (2002).CrossRefGoogle Scholar
  17. 17.
    A. A. Lebedev, A. I. Veinger, D. V. Davydov, et al., Semiconductors 34 (9), 1016 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. V. Kozlovski
    • 1
    Email author
  • A. E. Vasil’ev
    • 1
  • A. A. Lebedev
    • 2
  1. 1.St. Petersburg State Polytechnic UniversitySt. PetersburgRussia
  2. 2.Ioffe Physical–Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations