Advertisement

Synchrotron X-ray diffraction and small-angle X-ray scattering analyses of the nacre of the Nautilus shell

  • A. A. Veligzhanin
  • D. A. Petrochenkov
  • E. V. Khramov
  • D. I. Frey
  • A. A. Chernyshov
Article

Abstract

The structure of a mollusk shell is studied by synchrotron X-ray diffraction and small-angle X-ray scattering methods using a two-dimensional detector. Scattering is measured in the momentum transfer range of q = 0.03–60 nm–1, which makes it possible to reveal structural features in the size range of 0.1–200 nm. At large q values Bragg scattering is observed whose character shows that aragonite plates are good single crystals without internal inclusions. At small angles scattering mainly occurs at the biopolymer film. This scattering, which has not previously been observed, is strongly anisotropic. The anisotropy type corresponds to the one-dimensional mesostructure of the polymer, which is formed by a system of parallel fibers packed with a step of ~100 nm and has no longitudinal structuring. Information on the biopolymer is obtained in situ without destruction of the nacre.

Keywords

mollusk nacre biopolymer X-ray diffraction small-angle scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Luz and J. Mano, Philos. Trans. A 367, 1587 (2009).CrossRefGoogle Scholar
  2. 2.
    R. Chen, C. Wang, Y. Huang, and H. Le, Mater. Sci. Eng. C 28, 218 (2008).CrossRefGoogle Scholar
  3. 3.
    G. Mayer, Science (Washington, D.C.) 310, 1144 (2005).CrossRefGoogle Scholar
  4. 4.
    C. Zhang and R. Zhang, Marine Biotechnol. 8, 572 (2006).CrossRefGoogle Scholar
  5. 5.
    F. Marin and G. Luque, Compt. Rend. Palevol. 3, 469 (2004).CrossRefGoogle Scholar
  6. 6.
    F. Marin, G. Luquet, B. Marie, and D. Medakovic, Curr. Top.Developm. Biol. 80, 209 (2008).CrossRefGoogle Scholar
  7. 7.
    I. Olson, R. Kozdon, J. Valley, and P. Gilbert, J. Am. Chem. Soc. 134, 7351 (2012).CrossRefGoogle Scholar
  8. 8.
    Y. Dauphin, A. D. Ball, M. Cotte, J.-P. Cuif, A. Meibom, J. Susini, C. Williams, and M. Salome, Anal. Bioanal. Chem. 390, 1659 (2008).CrossRefGoogle Scholar
  9. 9.
    X. D. Li, W.-C. Chang, Y. J. Chao, R. Z. Wang, and M. Chang, Nano Lett. 4, 613 (2004).CrossRefGoogle Scholar
  10. 10.
    V. N. Korneev, V. A. Shlektarev, A. V. Zabelin, V. M. Aul’chenko, B. P. Tolochko, M. R. Sharafutdinov, I. Medvedev, V. P. Gorin, O. V. Naida, and A. A. Vazina, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2, 872 (2008).CrossRefGoogle Scholar
  11. 11.
    A. A. Chernyshov, A. A. Veligzhanin, and Y. V. Zubavichus, Nucl. Instrum. Methods Phys. Res. A 603, 95 (2009).CrossRefGoogle Scholar
  12. 12.
    V. Petricek, M. Dusek, and L. Palatinus, Jana2006, Structure Determination Software Programs (Inst. Physics, Praha, Czech Republic, 2006). http://jana.fzu.czGoogle Scholar
  13. 13.
    http://www.linkam.co.uk/storage/application-notes/PVDF-final.pdfGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. A. Veligzhanin
    • 1
    • 2
  • D. A. Petrochenkov
    • 3
  • E. V. Khramov
    • 1
  • D. I. Frey
    • 1
  • A. A. Chernyshov
    • 1
  1. 1.Scientific Research Center “Kurchatov Institute,”MoscowRussia
  2. 2.Moscow Physical–Technical Institute (State University)DolgoprudnyRussia
  3. 3.Russian State Geological Exploration UniversityMoscowRussia

Personalised recommendations