Advertisement

Electronic structure and inner-shell excited luminescence in gadolinium molybdate single crystals

  • I. A. GofmanEmail author
  • V. A. Pustovarov
  • M. V. Kuznetsov
Article
  • 36 Downloads

Abstract

An electronic structure of Gd2(MoO4)3 was studied using methods of luminescence and X-ray photoelectron spectroscopy. Luminescent properties under excitation were investigated in energy ranges 125–165 and 526–553 eV which correspond to Gd4d and O1s shells. Luminescence excitation spectra were antibate to X-ray absorption spectra. The X-ray photoelectron spectroscopy appended these data by density of states in energy ranges where no resonant structures in excitation spectra were found. A low-temperature emission of Gd3+ ions was registered in gadolinium molybdate for the first time. Possible models of energy transfer in cation sublattice are discussed.

Keywords

Valence Band Surface Investigation Neutron Technique Luminescence Excitation Spectrum Intrinsic Luminescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ayame, K. Uchida, M. Iwataya, and M. Miyamoto, Appl. Catal. A: Gen. 227, 7 (2002).CrossRefGoogle Scholar
  2. 2.
    J. Szade, M. Neumann, I. Karla, et al., Solid State Commun. 113, 709 (2000).CrossRefGoogle Scholar
  3. 3.
    J. P. Smit, T. M. McDonald, and K. R. Poeppelmeier, Solid State Sci. 10, 396 (2008).CrossRefGoogle Scholar
  4. 4.
    Y. Zhang, N. A. W. Holzwarth, and R. T. Williams, Phys. Rev. B 57, 12738 (1998).CrossRefGoogle Scholar
  5. 5.
    M. Fujita, M. Itoh, T. Katagiri, et al., Phys. Rev. B 77, 155118 (2008).CrossRefGoogle Scholar
  6. 6.
    M. Kirm, A. Lushchik, C. Lushchik, et al., J. Luminesc. 102–103, 307 (2003).CrossRefGoogle Scholar
  7. 7.
    J. Sugar, Phys. Rev. B 5, 1785 (1972).CrossRefGoogle Scholar
  8. 8.
    I. A. Gofman, V. A. Pustovarov, N. I. Lobachevskaya, and V. D. Zhuravlev, Rad. Meas. 56, 44 (2013).CrossRefGoogle Scholar
  9. 9.
    F. M. F. De Groot, M. Grioni, J. C. Fuggle, et al., Phys. Rev. B 40, 5715 (1989).CrossRefGoogle Scholar
  10. 10.
    S. Chaturvedi, J. Rodriguez, and J. Brito, Catal. Lett. 51, 85 (1998).CrossRefGoogle Scholar
  11. 11.
    M. Ouwerkerk, F. Kellendonk, and G. Blasse, J. Chem. Soc. Faraday Trans. 2 78, 603 (1982).CrossRefGoogle Scholar
  12. 12.
    A. M. Mamedov, J. Exp. Theor. Phys. 90, 305 (1986).Google Scholar
  13. 13.
    D. Zhao, W. D. Cheng, H. Zhang, et al., J. Mol. Struct. 919, 178 (2009).CrossRefGoogle Scholar
  14. 14.
    P. Dorenbos, A. H. Krumpel, E. van der Kolk, et al., Opt. Mater. 32, 1681 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • I. A. Gofman
    • 1
    Email author
  • V. A. Pustovarov
    • 1
  • M. V. Kuznetsov
    • 2
  1. 1.Ural Federal UniversityEkaterinburgRussia
  2. 2.Institute of Solid State ChemistryRussian Academy of Sciences (Ural Branch)EkaterinburgRussia

Personalised recommendations