Formation and stability of E93-type phases in the Ni-Nb alloy system studied by X-ray and neutron diffraction

  • V. V. Savin
  • V. A. Semin
  • V. K. Semina


By analyzing the phase states formed in Ni60-30Nb40-70 alloys under melt quenching and amorphous alloy crystallization, some researchers have revealed the formation of two E93-type phases (η′ and η″) with different crystal-lattice periods: 1.120 ± 0.001 and 1.164 ± 0.002 nm, respectively. To obtain more accurate information on the structure of these phases and explain the reasons of their formation during the non-equilibrium crystallization of a supercooled melt and an amorphous alloy, X-ray and neutron diffraction methods, as well as crystal-chemical criteria from the formation and stability theory for intermediate phases and metal glasses in transition-metal systems, are used. It is experimentally demonstrated that the η′ and η″ phases belong to different structural types, namely, Fe6W6C and Ti2Ni, respectively. The formation of the phases mentioned above is correlated with the corresponding crystal-chemical parameters: the size factor and the electron concentration.


Ni-Nb alloys rapid melt quenching E93-type phases Ti2Ni and Fe6W6C structures influence of impurities electron concentration size factor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. V. Savin and E. Yu. Kostenko, Crystal Chemistry of Intermediate Phases and Transition Metal-Based Amorphous Alloys, Monography (Zaporozh. Nats. Univ., Zaporozh’e, 2005) [in Russian].Google Scholar
  2. 2.
    V. V. Savin, Mater. Sci. Forum 133–136, 493 (1993).CrossRefGoogle Scholar
  3. 3.
    N. I. Kornilov and E. N. Pylyaeva, Izv. Akad. Nauk SSSR, Met., No. 5, 132 (1966).Google Scholar
  4. 4.
    P. I. Kripyakevich and E. N. Pylyaeva, Sov. Phys. Crystallogr. 12, 294 (1967).Google Scholar
  5. 5.
    V. V. Savin, G. P. Brekharya, L. A. Savina, and G. F. Prokoshina, in Amorphous (Glassy) Metallic Materials (Inst. Metallurgii AN SSSR, Moscow, 1992), p. 94 [in Russian].Google Scholar
  6. 6.
    M. V. Nevitt, Trans. Met. Soc. AIME 218, 327 (1960).Google Scholar
  7. 7.
    Ya. S. Umanskii and N. T. Chebotarev, Izv. Akad. Nauk SSSR, Ser. Fiz. 15, 24 (1951).Google Scholar
  8. 8.
    Yu. A. Skakov, N. P. D’yakonova, V. V. Savin, et al., Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 5, 85 (1984).Google Scholar
  9. 9.
    V. V. Savin and E. V. Shelekhov, Diffraction and Resonance Research Methods: Diffraction Researches of Amorphous Alloys Structure. Practical Guide (Zaporozh. Gos. Univ., Zaporozh’e, 1992) [in Russian].Google Scholar
  10. 10.
    N. P. D’yakonova, O. V. Kondrat’eva, V. V. Savin, et al., Research Problems of Amorphous Metallic Alloy Structure (MISiS, Moscow, 1984), p. 44 [in Russian].Google Scholar
  11. 11.
    N. P. D’yakonova, V. V. Savin, V. K. Semina, et al., Metallofizika 11(2), 25 (1989).Google Scholar
  12. 12.
    I. S. Miroshnichenko, Quenching from the Liquid State (Metallurgiya, Moscow, 1982) [in Russian].Google Scholar
  13. 13.
    J. Walter and S. F. Bertram, in Proceedings of the 3rd International Conference on Rapidly Quenched Metals, Brighton, July 1978, Ed. by B. Cantor (Metals Soc., London, 1978; Metallurgiya, Moscow, 1983), p. 165.Google Scholar
  14. 14.
    G. A. Yurko, J. W. Barton, and P. Gordon, Acta Crystallogr. 12, 909 (1959).CrossRefGoogle Scholar
  15. 15.
    C. J. Smithells, Metals Reference Book (Butterworths, London, 1967).Google Scholar
  16. 16.
    M. H. Mueller and H. W. Knott, Trans. Metals Soc. AIME 227, 674 (1963).Google Scholar
  17. 17.
    W. Pearson, The Crystal Chemistry and Physics of Metals and Alloys (Wiley, New York, 1972), Vol. 1.Google Scholar
  18. 18.
    O. A. Bannykh, R. M. Volkova, and V. A. Bozhenov, Izv. Akad. Nauk SSSR, Met., No. 2, 202 (1984).Google Scholar
  19. 19.
    Ya. S. Umanskii, Yu. A. Skakov, A. M. Ivanov, and L. I. Rastorguev, Crystallography, X-ray Diffraction, and Electron Microscopy (Metallurgiya, Moscow, 1982) [in Russian].Google Scholar
  20. 20.
    Yu. Z. Nozik, R. P. Ozerov, and K. Hennig, Neutrons and Solids, Vol. 1: Structural Neutronography (Atomizdat, Moscow, 1979) [in Russian].Google Scholar
  21. 21.
    V. P. Glazkov, A. E. Golovanov, V. A. Somenkov, et al., Prib. Tekh. Eksp., No. 3, 47 (1974).Google Scholar
  22. 22.
    International Tables for X-ray Crystallography, Vol. A, Ed. by Th. Hahn (Springer, Dordrecht, 2005).Google Scholar
  23. 23.
    S. S. Gorelik, L. N. Rastorguev, and Yu. A. Skakov, X-ray and Electon-Optical Analysis (Metallurgiya, Moscow, 1970) [in Russian].Google Scholar
  24. 24.
    J. Leciejewicz, J. Less-Common Met. 7, 318 (1964).CrossRefGoogle Scholar
  25. 25.
    State Diagrams of Metallic Systems (VINITI, Moscow, 1975) [in Russian].Google Scholar
  26. 26.
    R. E. Watson and L. H. Bennett, Acta Metall. 30, 1941 (1982).CrossRefGoogle Scholar
  27. 27.
    R. E. Watson and L. H. Bennett, Phys. Rev. 12, 6439.Google Scholar
  28. 28.
    R. E. Watson and L. H. Bennett, Acta Metall. 32, 491 (1984).CrossRefGoogle Scholar
  29. 29.
    R. E. Watson and L. H. Bennett, Acta Metall. 32, 477 (1984).CrossRefGoogle Scholar
  30. 30.
    Electronic Structure and Alloy Chemistry of the Transition Elements, Ed. by M. V. Nevitt and P. A. Beck (Wiley Interscience, New York, 1963; Metallurgiya, Moscow, 1966), p. 99.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Immanuel Kant Baltic Federal UniversityKaliningradRussia
  2. 2.Flerov Laboratory of Nuclear ReactionsJoint Institute for Nuclear ResearchDubna, Moscow regionRussia

Personalised recommendations