Advertisement

Surface transition-layer model used to study the fine structure of X-ray reflection spectra

  • M. I. MazuritskiyEmail author
  • A. A. Novakovich
Article

Abstract

Experimental and theoretical studies are performed to characterize the X-ray reflection spectra obtained in the case of the grazing incidence of monochromatic radiation on the plane surface of single- and polycrystalline quartz samples and the channel walls of microchannel plates. It is established that the theoretically calculated fine structures of the X-ray spectra and those measured with a high resolution are closely coincident at energies corresponding to an anomalous dispersion region near the SiL 2,3 absorption edge. Theoretical calculations are carried out using a model involving a transition layer on a sample surface.

Keywords

Surface Investigation Neutron Technique Grazing Angle Photoabsorption Cross Section Synchrotron Neutron Tech 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. P. Domashevskaya, A. S. Len’shin, V. M. Kashkarov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 106 (2012).CrossRefGoogle Scholar
  2. 2.
    V. M. Kashkarov, A. S. Len’shin, P. V. Seredin, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 776 (2012).CrossRefGoogle Scholar
  3. 3.
    M. I. Mazuritskiy, JETP Lett. 84, 381 (2006).CrossRefGoogle Scholar
  4. 4.
    M. I. Mazuritskiy and P. V. Makhno, JETP Lett. 88, 351 (2008).CrossRefGoogle Scholar
  5. 5.
    M. I. Mazuritskiy, S. B. Dabagov, K. Dziedzic-Kocurek, et al., Nucl. Instrum. Methods Phys. Res. B 309, 240 (2013).CrossRefGoogle Scholar
  6. 6.
    F. Shafers, H.-C.h. Martins, A. Gaupp, et al., Appl. Phys. 38, 4074 (1999).Google Scholar
  7. 7.
    R. M. Fechtchenko, A. V. Popov, and A. V. Vinogradov, J. Russ. Laser Res. 21, 62 (2000).CrossRefGoogle Scholar
  8. 8.
    I. D. Feranchuk, S. I. Feranchuk, and A. P. Ulyanenkov, Phys. Rev. B 75, 085414 (2007).CrossRefGoogle Scholar
  9. 9.
    L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Nonrelativistic Theory (Nauka, Moscow, 1989; Pergamon, New York, 1977).Google Scholar
  10. 10.
    L. D. Landau and E. M. Lifshits, Electrodynamics of Continuos Media (Pergamon, New York, 1960).Google Scholar
  11. 11.
    V. B. Berestetskii, E. M. Lifshits, and L. P. Pitaevskii, Quantum Electrodynamics (Nauka, Moscow, 1980; Pergamon, Oxford, 1982).Google Scholar
  12. 12.
    G. Bateman and A. Erdelyi, Tables of Integral Transforms (McGraw-Hill, New York, 1954; Nauka, Moscow, 1970), Vol. 2.Google Scholar
  13. 13.
    E. Filatova, A. Stepanov, C. Blessing, et al., J. Phys.: Condens. Matter 7, 2731 (1995).Google Scholar
  14. 14.
    M. I. Mazuritskiy, J. Synchrotr. Rad. 19, 129 (2012).CrossRefGoogle Scholar
  15. 15.
    M. A. Andreeva, E. P. Domashevskaya, E. E. Odintsova, et al., J. Synchrotr. Rad. 19, 609 (2012).CrossRefGoogle Scholar
  16. 16.
    B. Poumellec, V. Kraizman, Y. Aifa, et al., Phys. Rev. B 58, 6133 (1998).CrossRefGoogle Scholar
  17. 17.
    J. Kokobun, K. Ishida, D. Cabaret, et al., Phys. Rev. B 69, 245103 (2004).CrossRefGoogle Scholar
  18. 18.
    P. Tripathi, G. S. Lodha, M. H. Modi, et al., Opt. Commun. 211, 215 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations