Advertisement

Nanometer-precision contour-measurement technique for the diagnostics of multilayer nanostructures

  • V. B. LoginovEmail author
  • V. I. Troyan
  • A. G. Elkin
  • B. A. Loginov
  • P. V. Borisyuk
  • V. D. Borman
  • V. N. Tronin
Article
  • 58 Downloads

Abstract

A new technique of contour measurements with nanometer precision for the diagnostics of multilayer structures and other samples applied in optical and silicon technologies, and metal processing is proposed. This paper describes the development of two main technical solutions to achieve and verify nanometer resolution of the contour measuring instrument—single-crystal-silicon guide and test plates. The use of a crystal as a linear guide gives the possibility to achieve long-term stability of its bearing surface within a few nanometers. A test sample of a multilayer structure is developed and its parameters are controlled by means of transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge spectroscopy (XANES). The results of measuring test samples with a step height of 100 and 200 nm by means of the contour measurement technique are presented.

Keywords

Surface Investigation Neutron Technique Gold Cluster Silicon Plate Gold Nanoclusters 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Jaeger, Introduction to Microelectronic Fabrication, 2nd ed. (Prentice Hall, Upper Saddle River, 2002).Google Scholar
  2. 2.
    J. Stokes, Ars. Tech. 9, 27 (2008).Google Scholar
  3. 3.
    V. I. Kuz’menko and V. A. Vasilenko, Vestn. Tekh. Univ. KhPI, No. 47, 145 (2011).Google Scholar
  4. 4.
    Y. S. Tarng, J. Y. Kao, and Y. S. Lin, Int. J. Adv. Manufact. Technol. 13, 77 (1997).CrossRefGoogle Scholar
  5. 5.
    L. Eung-Suk, S. Suk-Hwan, and Jin-Wook Shon, Int. J. Adv. Manufact. Technol. 14, 43 (1998).CrossRefGoogle Scholar
  6. 6.
    V. B. Loginov, V. I. Troyan, A. G. Elkin, et al., RF Request No. 2013107665/011342 (2013).Google Scholar
  7. 7.
    R. V. Vedrinskii, Soros. Obrazov, Zh., No. 5, 79 (1996).Google Scholar
  8. 8.
    A. Bianconi and A. Marcelli, Synchrotron Radiation Research (Plenum Press, New York, 1992), Vol. 1.Google Scholar
  9. 9.
    J. A. Bearden and A. F. Burr, Rev. Mod. Phys. 39, 125 (1967).CrossRefGoogle Scholar
  10. 10.
    B. Ankudinov, J. J. Ravel, and J. J. Reheat, Phys. Rev. B 58, 7565 (1998).CrossRefGoogle Scholar
  11. 11.
    A. L. Ankudinov, C. E. Bolden, J. J. Rohr, et al., Phys. Rev. B 65, 104107 (2002).CrossRefGoogle Scholar
  12. 12.
    V. B. Loginov, P.V. Borisyuk, V.D. Borman, et al., Yad. Fiz. Inzhenir. 5, 474 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. B. Loginov
    • 1
    Email author
  • V. I. Troyan
    • 1
  • A. G. Elkin
    • 2
  • B. A. Loginov
    • 2
  • P. V. Borisyuk
    • 1
  • V. D. Borman
    • 1
  • V. N. Tronin
    • 1
  1. 1.National Research Nuclear University MEPhIMoscowRussia
  2. 2.National Research University MIETMoscow, ZelenogradRussia

Personalised recommendations