Advertisement

Experimental investigation of C60/NMP/toluene solutions by UV-Vis spectroscopy and small-angle neutron scattering

  • T. V. Tropin
  • T. O. Kyrey
  • O. A. Kyzyma
  • A. V. Feoktistov
  • M. V. Avdeev
  • L. A. Bulavin
  • L. Rosta
  • V. L. Aksenov
Article

Abstract

The transformation of the C60 fullerene cluster state into C60/N-methylpyrrolidone (NMP) solution after the addition of a nonpolar solvent (toluene, electric permittivity ɛ= 2.4) is studied. The results of ultraviolet-visible spectroscopy and small-angle neutron scattering measurements are used for comparison of the C60/NMP/toluene system with C60/NMP mixtures with a high-polar solvent (water, ɛ = 80). As to the observed reorganization of the cluster state, the C60/NMP/toluene system is similar to the C60/NMP/water system. This effect is explained by the formation of charge-transfer complexes in the initial C60/NMP solution. These complexes are thought to be soluble in both binary mixtures. The connection between the cluster-reorganization effect and solvatochromism is discussed.

Keywords

Fullerene Surface Investigation Neutron Technique Cluster State Charge Transfer Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Avdeev, V. L. Aksenov, and T. V. Tropin, Russ. J. Phys. Chem. A 84, 1273 (2010).CrossRefGoogle Scholar
  2. 2.
    M. E. Shpilevkii, E. M. Shpilevskii, and V. F. Stel’makh, J. Eng. Phys. Thermophys. 74, 1499 (2001).CrossRefGoogle Scholar
  3. 3.
    S. Thakra and R. M. Mehta, Ind. J. Pharm. Sci. 68, 13 (2006).CrossRefGoogle Scholar
  4. 4.
    S. Nath, H. Pal, D. Palit, et al., J. Phys. Chem. B 102, 10158 (1998).CrossRefGoogle Scholar
  5. 5.
    A. Mrzel, A. Mertelj, A. Omerzu, et al., J. Phys. Chem. B 103, 11256 (1999).CrossRefGoogle Scholar
  6. 6.
    N. P. Yevlampieva, Yu. F. Biryulin, E. Yu. Melenevskaja, et al., Colloids Surf. 209, 167 (2002).CrossRefGoogle Scholar
  7. 7.
    M. Baibarac, L. Mihut, N. Preda, et al., Carbon 43, 1 (2005).CrossRefGoogle Scholar
  8. 8.
    P. J. Krusic, P. N. Wasserman, P. N. Keizer, et al., Science 254, 1183 (1991).CrossRefGoogle Scholar
  9. 9.
    O. A. Kyzyma, L. A. Bulavin, V. L. Aksenov, et al., Mater. Struct. 15, 17 (2008).Google Scholar
  10. 10.
    V. L. Aksenov, M. V. Avdeev, O. A. Kyzyma, et al., Crystallogr. Rep. 52, 479 (2007).CrossRefGoogle Scholar
  11. 11.
    O. A. Kyzyma, M. V. Korobov, M. V. Avdeev, et al., Fullerenes, Nanotubes, Carbon Nanostruct. 18, 458 (2010).CrossRefGoogle Scholar
  12. 12.
    V. L. Aksenov, M. V. Avdeev, T. V. Tropin, et al., Physica B 385386, 795 (2006).CrossRefGoogle Scholar
  13. 13.
    B. Jacrot, Rep. Progr. Phys. 39, 911 (1976).CrossRefGoogle Scholar
  14. 14.
    J. Catalan, J. L. Sair, J. L. Laynez, et al., Angew. Chew. 34, 105 (1995).CrossRefGoogle Scholar
  15. 15.
    T. O. Kyrey, O. A. Kyzyma, M. V. Avdeev, et al., Fullerenes, Nanotubes Carbon Nanostruct. (2011, in press).Google Scholar
  16. 16.
    S. Nath, H. Pal, and A. Sapre, Chem. Phys. Lett. 360, 422 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • T. V. Tropin
    • 1
  • T. O. Kyrey
    • 1
    • 2
  • O. A. Kyzyma
    • 1
    • 2
  • A. V. Feoktistov
    • 3
  • M. V. Avdeev
    • 1
  • L. A. Bulavin
    • 2
  • L. Rosta
    • 4
  • V. L. Aksenov
    • 1
    • 5
  1. 1.Frank Laboratory of Neutron PhysicsJoint Institute of Nuclear ResearchDubnaRussia
  2. 2.Taras Shevchenko National UniversityKyivUkraine
  3. 3.Forschungszentrum JülichJülichGermany
  4. 4.Research Institute for Solid State Physics and OpticsBudapestHungary
  5. 5.National Research Center Kurchatov InstituteMoscowRussia

Personalised recommendations