Disordered structure of cadmium sulphide nanoparticles

  • A. A. Rempel’Email author
  • A. S. Vorokh
  • R. Neder
  • A. Magerl
Proceedings of XVIII International Conference on the Application of Synchrotron Radiation SR-2010 (Budker INP SB RAS, Novosibirsk, Russia)


Based on X-ray diffraction data obtained for thin polycrystalline CdS films and computer simulation using the Debye formula in the framework of the DISCUS program, it has been established that the location of close-packed Cd planes in CdS nanoparticles is disordered. The absence of strict periodicity of the atomic structure in the presence of close packing, with the mutual tetrahedral environment of Cd and S atoms, is a special feature of CdS in the nanostate. The average lattice of a disordered close-packed structure is described by space group P6 with parameters of the unit cell a = 0.236 and c =0.334 nm and a degree of occupation of crystal-lattice sites of 1/3.


Surface Investigation Neutron Technique Average Lattice Sphalerite Structure Close Packed Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Rusu, A. Rumberg, and S. Schuler, J. Phys. Chem. Solids 64, 1849 (2003).CrossRefGoogle Scholar
  2. 2.
    H. Metin and R. Esen, J. Cryst. Growth 258, 141 (2003).CrossRefGoogle Scholar
  3. 3.
    H. El. Maliki, J. C. Bernéde, S. Marsillac, et al., J. Appl. Surf. Sci. 205, 65 (2003).CrossRefGoogle Scholar
  4. 4.
    B. Su, M. Wei, and K. L. Choy, Mater. Lett. 47, 83 (2001).CrossRefGoogle Scholar
  5. 5.
    K. Senthil, D. Mangalaraj, and Sa. K. Narayandass, Physica B 304, 175 (2001).CrossRefGoogle Scholar
  6. 6.
    P. N. Gibson, M. E. Ozsan, D. Lincot, et al., Thin Solid Films 362, 34 (2000).CrossRefGoogle Scholar
  7. 7.
    G. S. Wu, X. Y. Yuan, T. Xie, et al., Mater. Lett. 58, 794 (2004).CrossRefGoogle Scholar
  8. 8.
    W. Wang, Z. Liu, C. Zheng, et al., Mater. Lett. 57, 2755 (2003).CrossRefGoogle Scholar
  9. 9.
    O. Conde, A. G. Rolo, M. J. M. Gomes, et al., J. Cryst. Growth 247, 371 (2003).CrossRefGoogle Scholar
  10. 10.
    C. Li, X. Yang, B. Yang, et al., J. Cryst. Growth 291, 45 (2006).CrossRefGoogle Scholar
  11. 11.
    A. A. Rempel, N. S. Kozhevnikova, S. van den Berghe, and W. van Renterghem, Phys. Status Solidi B 242, R61 (2005).CrossRefGoogle Scholar
  12. 12.
    A. A. Rempel’, Usp. Khim. 76, 474 (2007).Google Scholar
  13. 13.
    A. A. Rempel and A. Magerl, Acta Crystallogr. A 66, 479 (2010).CrossRefGoogle Scholar
  14. 14.
    Th. Proffen and R. B. Neder, J. Appl. Crystallogr. 30, 171 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. A. Rempel’
    • 1
    Email author
  • A. S. Vorokh
    • 1
  • R. Neder
    • 2
  • A. Magerl
    • 2
  1. 1.Institute of Solid State Chemistry, Ural BranchRussian Academy of SciencesEkaterinburgRussia
  2. 2.Institut für Kristallographie und StrukturphysikUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations