Advertisement

Neutron Fourier diffractometer FSD for residual stress studies in materials and industrial components

  • G. D. Bokuchava
  • A. M. Balagurov
  • V. V. Sumin
  • I. V. Papushkin
Article

Abstract

Neutron diffraction study of residual stresses in materials became widely used in the world due to high penetrating power of neutrons. Therefore, to study residual stresses, the FSD (Fourier stress diffractometer) was developed at the IBR-2 reactor channel (Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia), which, due to a special correlation technique (a fast Fourier chopper for modulating the primary neutron beam intensity and the RTOF method for data acquisition) makes it possible to obtain high-esolution diffraction spectra Δd/d = 4 × 10-3. This diffractometer was developed taking into account world experience in the study of residual stresses in materials; experience in the development of such devices in Russia and abroad was also used. The FSD diffractometer itself and its current state are described.

Keywords

Surface Investigation Neutron Technique Neutron Beam Gauge Volume Neutron Guide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. L. Aksenov, A. M. Balagurov, V. G. Simkin, et al., J. Neutron Res. 5, 181 (1997).CrossRefGoogle Scholar
  2. 2.
    A. M. Balagurov, Neutron News 16, 8 (2005).CrossRefGoogle Scholar
  3. 3.
    G. D. Bokuchava, A. V. Tamonov, N. R. Shamsutdinov, et al., J. Neutron Res. 9, 255 (2001).CrossRefGoogle Scholar
  4. 4.
    A. V. Tamonov and V. V. Sumin, J. Neutron Res. 12, 69 (2004).CrossRefGoogle Scholar
  5. 5.
    J. Schreiber, V. Richter, G. Bokuchava, et al., in Proc. of Eur. Conf. on Hard Materials and Diamond Tooling (Eur. Powder Metallurgy Association, 2002), p. 114.Google Scholar
  6. 6.
    V. L. Aksenov, A. M. Balagurov, G. D. Bokuchava, et al., in Proc. of the Nation. Conf. RSNE’97 (Dubna, 1997), Vol. 1, p. 69.Google Scholar
  7. 7.
    G. D. Bokuchava, J. Schreiber, N. Shamsutdinov, et al., Physica B: Condens. Matter 276–278, 884 (2000).CrossRefGoogle Scholar
  8. 8.
    G. D. Bokuchava, V. V. Luzin, J. Schreiber, et al., Textures and Microstructures, 33, 279 (1999).CrossRefGoogle Scholar
  9. 9.
    G. D. Bokuchava, V. L. Aksenov, A. M. Balagurov, et al., Appl. Phys. A: Mater. Sci. Process. 74(Suppl. 1), s86 (2002).Google Scholar
  10. 10.
    A. M. Balagurov, G. D. Bokuchava, E. S. Kuzmin, et al., Z. Kristallographie, No. 23(Suppl.), 217 (2006).CrossRefGoogle Scholar
  11. 11.
    A. J. Allen, M. T. Hutchings, and C. G. Windsor, Adv. Phys. 34, 445 (1985).CrossRefGoogle Scholar
  12. 12.
    P. Hiismaki, H. Poyry, and A. Tiitta, J. Appl. Crystallogr. 21, 349 (1988).CrossRefGoogle Scholar
  13. 13.
    P. Hiismaki, V. A. Trounov, O. Antson, et al., in Proc. of the Conf. on Neutron Scattering in the Nineties (IAEA, Vienna, 1985), p. 453.Google Scholar
  14. 14.
    J. Schroder, V. A. Kudryashev, J. M. Keuter, et al., J. Neutron Res. 2, 129 (1994).CrossRefGoogle Scholar
  15. 15.
    A. A. Bogdzel’, G. D. Bokuchava, V. A. Butenko, et al., Preprint No. R10-2004-21 (JINR, 2004).Google Scholar
  16. 16.
    V. A. Kudryashev, V. A. Trounov, and V. G. Mouratov, Physica B 234–236, 1138 (1997).CrossRefGoogle Scholar
  17. 17.
    E. S. Kuzmin, A. M. Balagurov, G. D. Bokuchava, et al., J. Neutron Res. 10, 31 (2002).CrossRefGoogle Scholar
  18. 18.
    Handbook on Construction Materials, Ed. by B. N. Arzamasov et al. (Mosc. Gos. Tekh. Univ., Moscow, 2005) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • G. D. Bokuchava
    • 1
  • A. M. Balagurov
    • 1
  • V. V. Sumin
    • 1
  • I. V. Papushkin
    • 1
  1. 1.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia

Personalised recommendations