Vacuum ultraviolet smoothing of nanometer-scale asperities of Poly(methyl methacrylate) surface

  • R. V. Lapshin
  • A. P. Alekhin
  • A. G. Kirilenko
  • S. L. Odintsov
  • V. A. Krotkov
Article

Abstract

Smoothing of the nanometer-scale asperities of a poly(methyl methacrylate) (PMMA) film using vacuum ultraviolet (VUV) with the wavelength λ = 123.6 nm was studied. The exposure time and the residual air pressure in an working chamber were varied during the process of VUV treatment. A nanostructured surface of PMMA film is used as a sample to be exposed. The nanostructured surface of the PMMA film was obtained by treating the initially smooth spin-coated film in oxygen radio-frequency plasma. The degree of VUV exposure is estimated using changes in the morphology and roughness of the nanostructured surface, which were determined by atomic-force microscopy (AFM). Recognition of morphological surface features on the AFM-images and determination of main geometrical characteristics of these features are performed by using virtual feature-oriented scanning method. It is discovered by morphology and Fourier spectra that the nanostructured surface of the PMMA film is partially ordered. The developed VUV smoothing procedure can be used to treat the electron-beam, UV, and X-ray sensitive PMMA resists, PMMA elements of microelectromechanical systems, biomedical PMMA implants, as well as to certify nanotechnological equipment incorporating UV radiation sources.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    H. H. Solak, J. Phys. D. 39, R171 (2006).CrossRefADSGoogle Scholar
  2. 2.
    E. Dubois and J.-L. Bubbendorff, Solid-State Electron. 43, 1085 (1999).CrossRefADSGoogle Scholar
  3. 3.
    J. Hartwich, L. Dreeskornfeld, V. Heisig, et al., Appl. Phys. A 66, S685 (1998).CrossRefADSGoogle Scholar
  4. 4.
    L. J. Guo, J. Phys. D. 37, R123 (2004).CrossRefADSGoogle Scholar
  5. 5.
    F. Zhang and H. Y. Low, Nanotecnology 17, 1884 (2006).CrossRefADSGoogle Scholar
  6. 6.
    K.-S. Kim, Y. Ando, and K.-W. Kim, Nanotecnology 19, 105701 (2008).CrossRefADSGoogle Scholar
  7. 7.
    Y. Guo, G. Liu, Y. Xiong, and Y. Tian, J. Micromech. Microeng. 17, 9 (2007).CrossRefADSGoogle Scholar
  8. 8.
    J. M. Li, C. Liu, X. D. Dai, et al., J. Micromech. Microeng. 18, 095021 (2008).CrossRefADSGoogle Scholar
  9. 9.
    M. Haiducu, M. Rahbar, I. G. Foulds, et al., J. Micro-mech. Microeng. 18, 115029 (2008).CrossRefADSGoogle Scholar
  10. 10.
    S. E. Pel’tek, T. N. Goryachkovskaya, V. M. Popik, et al., Ross. Nanotekhnol. 3(9–10), 136 (2008).Google Scholar
  11. 11.
    S. W. Li, J. H. Xu, Y. J. Wang, et al., J. Micromech. Microeng. 19, 015035 (2009).CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    M. E. Vlachopoulou, A. Tserepi, P. Pavli, et al., J. Micromech. Microeng. 19, 015007 (2009).CrossRefADSGoogle Scholar
  13. 13.
    A. Nisar, N. Afzulpurkar, B. Mahaisavariya, and A. Tuantranont, Sens. Transducers 94, 176 (2008).Google Scholar
  14. 14.
    N. Gomathi, A. Sureshkumar, and S. Neogi, Current Sci. 94, 1478 (2008).Google Scholar
  15. 15.
    K. A. Valiev, L. V. Velikov, Yu. I. Dorofeev, et al., Poverkh-nost: Fiz. Khim. Mekh., No. 6, 86 (1985).Google Scholar
  16. 16.
    C. Peth, F. Barkusky, and K. Mann, J. Phys. D. 41, 105202 (2008).CrossRefADSGoogle Scholar
  17. 17.
    J. Chai, F. Lu, B. Li, and D. Y. Kwok, Langmuir 20, 10919 (2004).CrossRefPubMedGoogle Scholar
  18. 18.
    H. Lim, Y. Lee, S. Han, et al., J. Vac. Sci. Technol. A 19, 1490 (2001).CrossRefADSGoogle Scholar
  19. 19.
    N. Vourdas, A. Tserepi, and E. Gogolides, Nanotecnology 18, 125304 (2007).CrossRefADSGoogle Scholar
  20. 20.
    S. Yoshida, T. Ono, and M. Esashi, Nanotecnology 19, 475302 (2008).CrossRefADSGoogle Scholar
  21. 21.
    D. K. Singh, R. V. Krotkov, H. Xiang, et al., Nanotecnology 19, 245305 (2008).CrossRefADSGoogle Scholar
  22. 22.
    J. H. Choi, S. M. Adams, and R. Ragan, Nanotecnology 20, 065301 (2009).CrossRefADSGoogle Scholar
  23. 23.
    S. Magonov and Y. Godovsky, Am. Lab. 31, 52 (1999).Google Scholar
  24. 24.
    J. F. Jorgensen, K. Carneiro, and L. L. Madsen, Nanotecnology 4, 152 (1993).CrossRefADSGoogle Scholar
  25. 25.
    Ya. A. Rudzit and V. N. Plutalov, in Principles of Metrology, Precision and Reliability in Instrument Design (Mashi-nostroenie, Moscow, 1991) [in Russian].Google Scholar
  26. 26.
    R. V. Lapshin, Nanotecnology 15, 1135 (2004); www.niifp.ru/staff/lapshin/en.CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • R. V. Lapshin
    • 1
    • 2
  • A. P. Alekhin
    • 1
    • 2
  • A. G. Kirilenko
    • 1
  • S. L. Odintsov
    • 1
  • V. A. Krotkov
    • 1
  1. 1.State Scientific Center of Russian Federation, Institute of Physical Problems named after F. V. LukinZelenogradRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow RegionRussia

Personalised recommendations