Phenomenological model of the diffusion of impurity atoms in ultrathin silicon layers with a nonuniform distribution of temperatures

  • V. V. OvcharovEmail author
  • V. I. Rudakov


The influence of fluxes of intrinsic nonequilibrium semiconductor defects on impurity diffusion in a nonuniform temperature field is considered in the framework of the phenomenological theory of irreversible processes. The mass transfer coefficient defined as the ratio of the concentrations of nonequilibrium and equilibrium defects is introduced to take the excessive concentration of nonequilibrium defects into account. The introduction of this coefficient into equations for matter and heat fluxes makes it possible to express the parameters of the process of thermal diffusion (the diffusion coefficient and the heat of transport) as a time-dependent function of the excessive concentration of intrinsic nonequilibrium semiconductor defects.


Surface Investigation Effective Diffusion Neutron Technique Impurity Atom Intrinsic Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. T. Fiory, J. Mater. 57, 21 (2005).Google Scholar
  2. 2.
    R. Singh, J. Appl. Phys. 63(8), R59 (1988).CrossRefADSGoogle Scholar
  3. 3.
    O. W. Holland, Appl. Phys. Lett. 54(9), 798 (1989).CrossRefADSGoogle Scholar
  4. 4.
    F. F. Komarov, A. P. Novikov, V. S. Solov’ev, and S. Yu. Shiryaev, Structural Defects in Ion-Implanted Silicon (Minsk. Gos. Univ., Minsk, 1990) [in Russian].Google Scholar
  5. 5.
    A. R. Chelyadinskii and F. F. Komarov, Usp. Fiz. Nauk 173(8), 813 (2003) [Phys.—Usp. 46, 789 (2003)].CrossRefGoogle Scholar
  6. 6.
    V. A. Shklovskii, Zh. Eksp. Teor. Fiz. 82, 536 (1982) [Sov. Phys. JETP 55, 311 (1982)].Google Scholar
  7. 7.
    R. B. Fair, J. J. Wortman, and J. Liu, J. Electrochem. Soc. 131(10), 2387 (1984).CrossRefGoogle Scholar
  8. 8.
    R. B. Fair and S. Li, J. Appl. Phys. 83(8), 4081 (1998).CrossRefADSGoogle Scholar
  9. 9.
    H. U. Jager, T. Feudel, and S. Ulbricht, Phys. Stat. Solidi 116, 571 (1989).CrossRefGoogle Scholar
  10. 10.
    H. U. Jager, J. Appl. Phys. 78(1), 176 (1995).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    R. A. Oriani, J. Phys. Chem. Solids 30, 339 (1969).CrossRefADSGoogle Scholar
  12. 12.
    J. P. Stark, Solid State Diffusion (Wiley, New York, 1976; Energiya, Moscow, 1980).Google Scholar
  13. 13.
    S. De Groot, Thermodynamics of Irreversible Processes (Intersci. Publ., New York, 1951; Inostr. Liter., Moscow, 1956).zbMATHGoogle Scholar
  14. 14.
    Ad. Agarwal, D. H. Eagleasham, H. J. Gassmann, et al., Lecture Tu-1430, “Modeling Enhanced Diffusion of Implanted Dopants,”
  15. 15.
    L. Manu and A. G. R. Evans, Semicond. Sci. Technol. 4, 711 (1989).CrossRefADSGoogle Scholar
  16. 16.
    Y. Ishikava, K. Yamauchi, and I. Nakamichi, Jpn. J. Appl. Phys. 28(8), L1319 (1989).CrossRefADSGoogle Scholar
  17. 17.
    Y. M. Kim, G. Q. Lo, and D. L. Kwong, Appl. Phys. Lett. 55(22), 2316 (1989).CrossRefADSGoogle Scholar
  18. 18.
    Y. M. Kim, G. Q. Lo, H. Kinoshita, et al., J. Electrochem. Soc. 138(4), 1122 (1991).CrossRefGoogle Scholar
  19. 19.
    I. Prigozhin and D. Kondespudi, Modern Thermodynamics: From Heat Engines to Dissipative Structures (Wiley, New York, 1998; Mir, Moscow, 2002).Google Scholar
  20. 20.
    G. Manning, Diffusion Kinetics for Atoms in Crystals (Van Nostrand, New York, 1968; Mir, Moscow, 1971).Google Scholar
  21. 21.
    V. I. Rudakov and V. V. Ovcharov, Int. J. Heat Mass Transfer 45, 743 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  1. 1.Institute of Physics and Technology, Yaroslavl BranchRussian Academy of SciencesYaroslavlRussia

Personalised recommendations