Generation of X-rays at bubble cavitation in a fast liquid jet in dielectric channels

  • A. A. Kornilova
  • V. I. Vysotskii
  • N. N. Sysoev
  • A. V. Desyatov
Proceedings of the XXXVIII International Conference on Physics of Interaction of Charged Particles with Crystals (Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia, 2008)


The paper presents the results of studying the combined shock-wave radiation-emission processes associated with cavitation phenomena that occur at fast directional motion of a liquid jet into a closed working chamber through narrow dielectric channels. These processes induce high-power tunable X-ray radiation outside the chamber. At a relatively small liquid pressure, cavitation has been shown to generate shock waves in the chamber walls, which excites surface atoms and leads to the emission of X-rays from the outer surface of the chamber. At a high liquid pressure, the liquid jet does not touch the chamber walls and the cavitational shock waves lead to the excitation of the surface atoms of the jet itself accompanied by the generation of optical and X-ray radiation in the jet, which has been also observed in experiments.


Shock Wave Surface Investigation Neutron Technique Chamber Wall Cavitation Bubble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Kornilova, V. I. Vysotskii, A. I. Koldamasov, et al., Poverkhnost’. Rentgen., Sinkhrotr. I Neitron. Issled, No. 3, 55 (2007).Google Scholar
  2. 2.
    B. P. Barber, R. A. Hiller, R. Lofstedt, et al., Phys. Rep. 281, 65 (1997).CrossRefADSGoogle Scholar
  3. 3.
    M. A. Margulis, Usp. Fiz. Nauk, 170, 279 (2000) [Phys.-Usp. 43, 259 (2000)].CrossRefGoogle Scholar
  4. 4.
    V. V. Selivanov, V. S. Solov’ev, and N. N. Sysoev, Shock and Detonation Waves (Methods of Investigation) (Mosk. Gos. Univ., Moscow, 1990) [in Russian].Google Scholar
  5. 5.
    R. Pecha and B. Gompf, Phys. Rev. Lett. 84, 1328 (2000).PubMedCrossRefADSGoogle Scholar
  6. 6.
    T. J. Matula, I. M. Hallaj, R. O. Cleveland, et al., J. Acoust. Soc. Am. 3, 1377 (1998).CrossRefADSGoogle Scholar
  7. 7.
    Z. Q. Wang, R. Pecha, B. Gompf, and W. Eisenmenger, Phys. Rev. E 59, 1777 (1999).CrossRefADSGoogle Scholar
  8. 8.
    D. I. Blokhintsev, Principles of Quantum Mechanics (Allyn & Bacon, Boston, 1964; Vysshaya shkola, Moscow, 1963).Google Scholar
  9. 9.
    E. N. Avrorin, B. K. Vodolaga, V. A. Simonenko, V. E. Fortov, et al., Usp. Fiz. Nauk 163(5), 1 (1993) [Phys. Usp. 36, 337 (1993)].Google Scholar
  10. 10.
    V. E. Fortov, Usp. Fiz. Nauk 177, 347 (2007) [Phys.-Usp. 50, 333 (2007)].CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. A. Kornilova
    • 1
  • V. I. Vysotskii
    • 2
  • N. N. Sysoev
    • 1
  • A. V. Desyatov
    • 3
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Kiev State UniversityKievUkraine
  3. 3.Keldysh Research CenterMoscowRussia

Personalised recommendations