Advertisement

Comparative analysis of the quality of membrane protein bacteriorhodopsin crystals during crystallization in octylglucoside and octylthioglucoside

  • E. S. MoiseevaEmail author
  • A. B. Reshetnyak
  • V. I. Borshchevskiy
  • C. Baeken
  • G. Buldt
  • V. I. Gordeliy
Article

Abstract

Crystallization of bacteriorhodopsin (bR) in the lipidic cubic phase using n-octyl-β-D-glucoside (OG) and its more stable and inexpensive analogue n-octyl-β-D-thioglucoside (OTG) was comparatively analyzed [1]. It was shown that bacteriorhodopsin is efficiently crystallized in OTG in the same detergent concentration range as in OG. However, x-ray diffraction analysis shows that bR crystals in OG are characterized by a better resolution (1.35 Å) than bR crystals in OTG (1.45 Å).

Keywords

Glucoside Surface Investigation Neutron Technique Brane Protein Monoolein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Tsuchiya and S. Saito, J. Biochem. 96, 1593 (1984).PubMedGoogle Scholar
  2. 2.
  3. 3.
    A. McPherson, Crystallization of Biological Macromolecules (Cold Spring Harbor Laboratory, New York, 1998), p. 252.Google Scholar
  4. 4.
    E. Landau and J. Rosenbusch, Proc. Natl. Acad. Sci. USA 93, 14532 (1996).Google Scholar
  5. 5.
    I. Gordeliy, J. Labahn, R. Moukhametzianov, et al., Nature 419, 484 (2002).PubMedCrossRefADSGoogle Scholar
  6. 6.
    R. Moukhametzianov, J. P. Klare, R. Efremov, et al., Nature 440, 115 (2006).PubMedCrossRefADSGoogle Scholar
  7. 7.
    M. Caffrey, J. Struct. Biol. 142, 108 (2003).PubMedCrossRefGoogle Scholar
  8. 8.
    J. K. Lanyi, J. Mol. Microbiol. Biotechnol. 12, 210 (2007).PubMedCrossRefGoogle Scholar
  9. 9.
    M. P. Krebs and T. A. Isenbarger, Biochim. Biophys. Acta 1460, 15 (2000).PubMedCrossRefGoogle Scholar
  10. 10.
    D. Oesterhelt and W. Stoeckenius, Methods. Enzymol. 31, 667 (1974).PubMedCrossRefGoogle Scholar
  11. 11.
    I. Gordeliy, R. Schlesinger, R. Efremov, et al., Methods Mol. Biol. 228, 305 (2003).PubMedGoogle Scholar
  12. 12.
    A. G. W. Leslie, Acta Crystallogr. D Biol. Cryst. 62, 48 (2006).CrossRefGoogle Scholar
  13. 13.
    Collaborat. Computational Project No. 4, Acta Crystallogr. D 50, 760 (1994).Google Scholar
  14. 14.
    S. Saito and T. Tsuchiya, Biochem. J. 222, 829 (1984).PubMedGoogle Scholar
  15. 15.
    B. Lorber, J. Bishop, and L. J. DeLucas, Biochim. Biophys. Acta 1023, 254 (1990).PubMedCrossRefGoogle Scholar
  16. 16.
    C. Sauter, J. D. Ng, B. Lorber, et al., J. Crystal Growth 196, 365 (1999).CrossRefGoogle Scholar
  17. 17.
    J. P. Anderson, G. Basi, M. T. Doan, et al. (Elan Pharmaceuticals, Inc.), β-Secretase Enzyme Compositions and Methods, US Patent No. 7067271 (2006); http://www.freepatentsonline.com/7067271.html

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • E. S. Moiseeva
    • 1
    • 2
    Email author
  • A. B. Reshetnyak
    • 1
    • 2
  • V. I. Borshchevskiy
    • 1
    • 2
  • C. Baeken
    • 4
  • G. Buldt
    • 4
  • V. I. Gordeliy
    • 1
    • 2
    • 3
    • 4
  1. 1.Institut de Biologie Structurale J.P. EbelGrenoble Cedex 1France
  2. 2.Moscow Institute for Physics and TechnologyCentre of Biophysics and Physical Chemistry of Supramolecular StructuresDolgoprudnyi, Moscow oblastRussia
  3. 3.Frank Laboratory of Neutron PhysicsJoint Institute for Nuclear ResearchDubna, Moscow oblastRussia
  4. 4.Institute for Neurobiology and Biophysics 2Forschungszentrum JülichJülichGermany

Personalised recommendations