Advertisement

EBIC investigations of GaN layers prepared by epitaxial lateral overgrowth

  • P. S. Vergeles
  • A. V. Govorkov
  • A. Ya. Polyakov
  • N. B. Smirnov
  • E. B. Yakimov
XV Russian Symposium on Scanning Electron Microscopy and Analytical Methods of Investigation of Solids (REM-2007)

Abstract

GaN films prepared by lateral overgrowth are investigated by scanning electron microscopy in the electron beam induced current (EBIC) mode. A comparison of experimental and simulated dependences of induced current on beam energy has allowed us to determine not only the diffusion length, but also the donor concentration in different areas of a film. It has been found that the donor distribution is inhomogeneous and this inhomogeneity increases under fast neutron irradiation. This is indicative of the significant influence of structural defects on the rate of radiation defect accumulation. An anomalously slow signal decay outside the Schottky barrier has been found, which can be determined by charged defects formed at the merger boundary.

Keywords

Diffusion Length Neutron Technique Schottky Barrier Donor Concentration Electron Beam Induce Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Nakamura, GaN and Related Materials II, Ed. by S. J. Pearton (Gordon and Breach, Netherlands, 2000), p. 1.Google Scholar
  2. 2.
    C. A. Usui, H. Sunakawa, A. Sakai, et al., Jpn. J. Appl. Phys. 36, L899 (1997).CrossRefGoogle Scholar
  3. 3.
    T. S. Zheleva, O. H. Nam, M. D. Bremser, et al., Appl. Phys. Lett. 71, 2473 (1997).CrossRefGoogle Scholar
  4. 4.
    Z. Liliental-Weber and D. Cherns, J. Appl. Phys. 89, 7833 (2001).CrossRefGoogle Scholar
  5. 5.
    H. J. Leamy, J. Appl. Phys. 53, R51 (1982).CrossRefGoogle Scholar
  6. 6.
    E. B. Yakimov, Izv. Akad. Nauk SSSR, Ser. Fiz. 56(3), 31 (1992).Google Scholar
  7. 7.
    E. B. Yakimov, Zavod. Lab. 68, 63 (2002).Google Scholar
  8. 8.
    V. I. Petrov, Usp. Fiz. Nauk 166, 859 (1996) [Phys. Usp. 39, 807 (1996)].Google Scholar
  9. 9.
    B. G. Yacobi and D. B. Holt, J. Appl. Phys. 59, R1 (1986).CrossRefGoogle Scholar
  10. 10.
    C. Frigeri, Inst. Phys. Conf. Ser., No. 87, 745 (1987).Google Scholar
  11. 11.
    E. B. Yakimov, P. S. Vergeles, A. Y. Polyakov, et al., Appl. Phys. Lett. 90, 5775 (2007).CrossRefGoogle Scholar
  12. 12.
    K. L. Luke, J. Appl. Phys. 80, 5775 (1996).CrossRefGoogle Scholar
  13. 13.
    N. M. Shmidt, O. A. Soltanovich, A. S. Usikov, et al., J. Phys.: Condens. Matter 14, 13 285 (2002).Google Scholar
  14. 14.
    E. E. Zavarin, S. I. Zaitsev, V. V. Sirotkin, et al., Poverkhnost, No. 3, 11 (2003).Google Scholar
  15. 15.
    In-Hwan Lee, A. Y. Polyakov, N. B. Smirnov, et al., Phys. Status Solidi C 3, 2087 (2006).CrossRefGoogle Scholar
  16. 16.
    E. B. Yakimov, S. S. Borisov, and S. I. Zaitsev, Fiz. Tekh. Poluprovodn. (S.-Peterburg) 41, 426 (2007) [Semiconductors 41, 411 (2007)].Google Scholar
  17. 17.
    Z. Z. Bandic, P. M. Bridger, E. C. Piquette, et al., Solid State Electron. 44, 221 (2000).CrossRefGoogle Scholar
  18. 18.
    L. Chernyak, A. Osinsky, and A. Schulte, Solid State Electron. 45, 1687 (2001).CrossRefGoogle Scholar
  19. 19.
    V. G. Eremenko and E. B. Yakimov, Eur. Phys. J. Appl. Phys. 27, 349 (2004).CrossRefGoogle Scholar
  20. 20.
    V. G. Eremenko and E. B. Yakimov, Izv. Akad. Nauk, Ser. Fiz. 68, 1328 (2004).Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • P. S. Vergeles
    • 1
  • A. V. Govorkov
    • 2
  • A. Ya. Polyakov
    • 2
  • N. B. Smirnov
    • 2
  • E. B. Yakimov
    • 1
  1. 1.Institute of Microelectronics Technology and High Purity MaterialsRussian Academy of ScienceChernogolovka, Moscow oblastRussia
  2. 2.FSUE GiredmetMoscowRussia

Personalised recommendations