Advertisement

Dependence of superconducting properties of underdoped Bi-2201 single crystals on the charge composition and growth conditions in gas-filled cavities

  • Yu. I. Gorina
  • G. A. Kalyuzhnaya
  • V. V. Rodin
  • N. N. Sentyurina
  • V. A. Stepanov
  • S. G. Chernook
Article

Abstract

High-quality Bi2 + x Sr2 − y CuO6 + δ (Bi-2201) single crystals with the ratio Bi/Sr = 1.4–2.0 were grown by the free growth method in gas-filled cavities in KCl solution-melt in a range of doping levels, which provides variation in superconducting properties from insulators to optimally doped crystals. The charge composition Bi : Sr : Cu = 1.7 : 2.3 : 2.5 with excess Sr and Cu and synthesis conditions provided growth cavity formation in the KCl solution at the crystal growth stage. Lamellar single crystals and whiskers were grown under quasi-equilibrium conditions of lowered growth temperatures and partial oxygen pressure, achieved in closed gas-filled cavities.

Keywords

Surface Investigation Neutron Technique Underdoped Sample Postgrowth Annealing Crystal Growth Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Gang, M. Z. Cieplak, and C. L. Chien, Phys. Rev. B 38, 11824 (1988).Google Scholar
  2. 2.
    E. Sonder, B. C. Chakoumakos, and B. C. Sales, Phys. Rev. B 40, 6872 (1989).CrossRefGoogle Scholar
  3. 3.
    M. Matsumoto and J. Shirafuji, J. Phys. C 185–189, 455 (1991).Google Scholar
  4. 4.
    K. Remshing, I. M. Tarascon, R. Ramesh, and G. W. Hull, J. Phys. C 175, 261 (1991).CrossRefGoogle Scholar
  5. 5.
    M. Boekholt, M. Fleuster, F. Nouvertne, et al., J. Phys. C 203, 180 (1992).CrossRefGoogle Scholar
  6. 6.
    A. I. Beskrovnyi, S. Durcok, J. Hejtmanek, et al., J. Phys. C 222, 375 (1994).CrossRefGoogle Scholar
  7. 7.
    A. T. Fiory, S. Martin, R. M. Fleming, et al., J. Phys. C 162–164, 1195 (1989).Google Scholar
  8. 8.
    S. Martin, A. T. Fiory, R. M. Fleming, et al., Phys. Rev. B 41, 846 (1990).CrossRefGoogle Scholar
  9. 9.
    J. I. Gorina, G. A. Kaljuzhnaia, V. I. Ktitorov, et al., Solid State Commun. 91, 615 (1994).CrossRefGoogle Scholar
  10. 10.
    I. M. Harris, P. J. White, Z. X. Chem, et al., Phys. Rev. Lett. 79, 143 (1997).CrossRefGoogle Scholar
  11. 11.
    C. T. Lin, B. Liang, M. Freiberg, et al., J. Phys. C 341–348, 541 (2000).Google Scholar
  12. 12.
    H. Luo, L. Fang, G. Mu, and H.-H. Wen, Condens. Matter 2, 0611349 (2006), Vol. 2.Google Scholar
  13. 13.
    B. Liang and C. J. Lin, J. Cryst. Growth 267, 510 (2004).CrossRefGoogle Scholar
  14. 14.
    V. P. Martovitskii, Zh. Eksp. Teor. Fiz. 129, 1087 (2006) [JETP 102, 958 (2006)].Google Scholar
  15. 15.
    J. I. Gorina, G. A. Kaljuzhnaia, N. N. Sentjurina, and V. A. Stepanov, Solid State Commun. 126, 557 (2003).CrossRefGoogle Scholar
  16. 16.
    Yu. I. Gorina, G. A. Kalyuzhnaya, V. V. Rodin, et al., Kristallografiya 52, 744 (2007) [Crystallogr. Rep. 52, 735 (2007)].Google Scholar
  17. 17.
    A. A. Tsvetkov, J. Schützmann, J. I. Gorina, et al., Phys. Rev. B 55, 14152 (1997).Google Scholar
  18. 18.
    S. I. Vedeneev and D. K. Maude, Phys. Rev. B 72, 2145514 (2005).Google Scholar
  19. 19.
    S. I. Vedeneev, D. K. Maude, E. Happel, and V. P. Mineev, Phys. Rev. B 75, 1 (2007).CrossRefGoogle Scholar
  20. 20.
    D. Mercurio, J. C. Chomparnaud-Mesjard, B. Frit, et al., J. Solid State. Chem. 112, 1 (1994).CrossRefGoogle Scholar
  21. 21.
    R. S. Roth, C. J. Rawn, and L. A. Bendersky, J. Matter. Res. 5, 46 (1990).CrossRefGoogle Scholar
  22. 22.
    J. I. Gorina, G. A. Kaljuzhnaia, V. P. Martovitsky, et al., Solid State Commun. 108, 275 (1998).CrossRefGoogle Scholar
  23. 23.
    V. P. Martovitskii, Kratk. Soobshch. Fiz. 5, 3 (2006).Google Scholar
  24. 24.
    E. K. Kazenas and D. M. Chizhikov, Vapor Pressure and Composition of Oxides of Chemical Elements (Nauka, Moscow, 1976) [in Russian].Google Scholar
  25. 25.
    J. Matsubara, T. Ogura, H. Tanigava, et al., J. Cryst. Growth 110, 973 (1991).CrossRefGoogle Scholar
  26. 26.
    M. R. Lieth, Phys. Status. Solidi A 12, 399 (1972).CrossRefGoogle Scholar
  27. 27.
    R. M. Fleming, S. A. Sunshine, L. F. Scheneemeyer, et al., J. Phys. C 173, 37 (1991).CrossRefGoogle Scholar
  28. 28.
    Y. Ikeda and H. Jto, J. Phys. C 159, 93 (1989).CrossRefGoogle Scholar
  29. 29.
    K. Schulze, P. Majewski, B. Hettich, and G. Petrov, Z. Metallkunde 81, 836 (1990).Google Scholar
  30. 30.
    D. Sedmidubský and E. Pollert, J. Phys. C 217, 203 (1993).CrossRefGoogle Scholar
  31. 31.
    S. A. Degtyarev and G. F. Voronin, Zh. Fiz. Khim. 67, 2393 (1993).Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • Yu. I. Gorina
    • 1
  • G. A. Kalyuzhnaya
    • 1
  • V. V. Rodin
    • 1
  • N. N. Sentyurina
    • 1
  • V. A. Stepanov
    • 1
  • S. G. Chernook
    • 1
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations