Structural and phase analysis of rapidly solidified Al-Fe alloys

  • I. I. Tashlykova-Bushkevich
  • E. S. Gut’ko
  • V. G. Shepelevich
  • S. M. Baraishuk


The structure and phase composition of lightly-doped Al-Fe alloys obtained by ultrarapid quenching from the melt are investigated. The surface of foils was studied using scanning electron microscopy, atomic-force microscopy, and Rutherford backscattering technique. The variation in the phase composition of alloys during annealing was studied by x-ray diffraction technique and by resistivity and microhardness measurements. The Al-Fe alloys have microcrystalline structure with a nonuniform iron content in the near-surface region of the samples. A correlation of depth profiles of iron and phase composition of the foils is observed. It is found that decomposition of the supersaturated α solid solution proceeds in the temperature range 250–350°C. As the annealing temperature increases, a metastable Al6Fe phase is precipitated. In the range 300–500°C, the metastable Al6Fe phase decomposes, and a stable Al3Fe phase is precipitated.


Unit Cell Parameter Surface Investigation Iron Atom Neutron Technique Interplanar Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. Katgerman and F. Dom, Mater. Sci. Eng., A 375–377, 1212 (2004).Google Scholar
  2. 2.
    E. J. Lavernia, J. D. Ayers, and T. S. Srivatson, Int. Mater. Rev. 37(1), 1 (1992).Google Scholar
  3. 3.
    R. F. Cochrane, P. V. Evans, and A. L. Greer, Mater. Sci. Eng., A 133, 803 (1991).CrossRefGoogle Scholar
  4. 4.
    D. H. Kim and B. Cantor, J. Mater. Sci. 29, 2884 (1994).CrossRefGoogle Scholar
  5. 5.
    T. I. Anishchenko, B. N. Litvin, and L. M. Burov, Structure and Properties of Al-Fe Alloys Produced under Nonequilibrium Conditions (Dnepropetrovsk University, Dnepropetrovsk, 1990) [in Russian].Google Scholar
  6. 6.
    I. G. Brodova, V. O. Esin, I. V. Polents, et al., Rasplavy, No. 1, 16 (1990).Google Scholar
  7. 7.
    M. Bizjak and L. Kosec, Z. Metallkd. 91(2), 160 (2000).Google Scholar
  8. 8.
    I. I. Tashlykova-Bushkevich and V. G. Shepelevich, Fiz. Khim. Obrab. Mater., No. 6, 73 (1999).Google Scholar
  9. 9.
    I. I. Tashlykova-Bushkevich, Vacuum 78(2–4), 529 (2005).CrossRefGoogle Scholar
  10. 10.
    F. F. Komarov, M. A. Kumakhov, and I. S. Tashlykov, Non-Destructive Ion Beam Analysis of Surfaces (Universitetskoe, Minsk, 1987; Gordon and Breach, New York, 1990).Google Scholar
  11. 11.
    L. N. Doolittle, Nucl. Instrum. Methods Phys. Res., Sect. B 9, 344 (1985).CrossRefGoogle Scholar
  12. 12.
    M. Bizjak, L. Kosec, B. Kosec, and I. Anzel, Metalurgija (Zagreb, Croatia) 45(4), 281 (2006).Google Scholar
  13. 13.
    I. I. Tashlykova-Bushkevich, V. G. Shepelevich, and E. Yu. Neumerzhitskaya, Poverkhnost, No. 4, 69 (2007).Google Scholar
  14. 14.
    S. I. Miroshnichenko, Quenching from the Liquid State (Metallurgiya, Moscow, 1982) [in Russian].Google Scholar
  15. 15.
    I. I. Tashlykova-Bushkevich, Method of Rutherford Backscattering for Analysis of Compositions of Solids (Belarussian State University of Informatics and Radioelectronics, Minsk, 2003) [in Russian].Google Scholar
  16. 16.
    G. L. Squires, Practical Physics (Wiley, London, 1968; Mir, Moscow, 1971).Google Scholar
  17. 17.
    A. A. Rusakov, X-ray Diffraction of Metals (Atomizdat, Moscow, 1977) [in Russian].Google Scholar
  18. 18.
    Aluminum: Properties and Physical Metallurgy (Reference Book), Ed. by J. E. Hatch (The American Society for Metals, Metals Park, Ohio (United States), 1984; Metallurgiya, Moscow, 1989).Google Scholar
  19. 19.
    M. Hansen and K. Anderko, Constitution of Binary Alloys (McGraw-Hill, New York, 1958; Metallurgizdat, Moscow, 1962), Vol. 2.Google Scholar
  20. 20.
    E. Yu. Vasilevich, E. S. Gut’ko, and V. G. Shepelevich, Theoretical and Technological Foundations of Hardening and Restoration of Products of Mechanical Engineering: Collected of Papers (Polotsk State University, Polotsk, 2001), p. 162 [in Russian].Google Scholar
  21. 21.
    V. G. Shepelevich, I. I. Tashlykova-Bushkevich, and A. G. Anisovich, Fiz. Khim. Obrab. Mater., No. 4, 86 (1999).Google Scholar
  22. 22.
    I. I. Tashlykova-Bushkevich, E. S. Gut’ko, and V. G. Shepelevich, Perspekt. Mater., No. 1, 59 (2005).Google Scholar
  23. 23.
    I. I. Tashlykova-Bushkevich, E. S. Gut’ko, and V. G. Shepelevich, Adv. Mater. 12(1), 54 (2005).Google Scholar
  24. 24.
    M. A. Taha, N. A. El-Mahallawy, and M. F. Abedel-Ghaffar, J. Mater. Sci. 27, 5823 (1992).CrossRefGoogle Scholar
  25. 25.
    A. P. Gulyaev, Physical Metallurgy (Metallurgiya, Moscow, 1986; Mir, Moscow, 1980).Google Scholar
  26. 26.
    I. I. Tashlykova-Bushkevich and V. G. Shepelevich, J. Alloys Compd. 29, 205 (2000).CrossRefGoogle Scholar
  27. 27.
    I. I. Tashlykova-Bushkevich and V. G. Shepelevich, Fiz. Khim. Obrab. Mater., No. 4, 99 (2000).Google Scholar
  28. 28.
    I. I. Tashlykova-Bushkevich, in Proceedings of the 3rd All-Russian Scientific and Technical Conference on Rapidly-Quenched Materials and Coatings, Ed. by A. P. Petrov, V. A. Vasil’ev, and A. A. Lozovan (Moscow State Aviation Technological University (MATI)-Russian State Technological University (RGTU), Moscow, 2004), p. 23.Google Scholar
  29. 29.
    I. I. Tashlykova-Bushkevich, V. S. Kulikauskas, V. Vesh, et al., Fiz. Khim. Obrab. Mater., No. 3, 75 (2004).Google Scholar
  30. 30.
    I. I. Tashlykova-Bushkevich, E. S. Gut’ko, and V. G. Shepelevich, Poverkhnost, No. 4, 100 (2006).Google Scholar
  31. 31.
    T. S. Srivatson, T. S. Sudarshan, and E. J. Lavernia, Prog. Mater. Sci. 39, 317 (1995).CrossRefGoogle Scholar
  32. 32.
    F. Pleiter and C. Hohenemser, Phys. Rev. B: Condens. Matter 25(1), 106 (1982).Google Scholar
  33. 33.
    M. de Haas and J. Th. M. de Hosson, Scr. Mater. 44, 281 (2001).CrossRefGoogle Scholar
  34. 34.
    A. Brokman, Acta Metall. 35(2), 307 (1987).CrossRefGoogle Scholar
  35. 35.
    A. R. Knudson, Nucl. Instrum. Methods 168, 163 (1980).CrossRefGoogle Scholar
  36. 36.
    A. A. Klyuchnikov, N. N. Pucherov, T. D. Chesnokova, and V. N. Shcherbin, Methods of Charged-Particle Beam Analysis (Naukova Dumka, Kiev, 1987) [in Russian].Google Scholar
  37. 37.
    V. Shepelevich and I. Tashlykova-Bushkevich, Mater. Sci. Forum 248–249, 385 (1997).CrossRefGoogle Scholar
  38. 38.
    V. I. Fadeeva, A. V. Leonov, G. K. Ryasnyi, and S. I. Reiman, Metally, No. 2, 87 (1993).Google Scholar
  39. 39.
    A. Il’inskii, S. Slyusarenko, O. Slukhovskii, et al., Mater. Sci. Eng., A 325(1–2), 98 (2002).Google Scholar
  40. 40.
    A. G. Khachaturyan, Theory of Structural Transformations in Solids (Nauka, Moscow, 1974; Wiley, New York, 1983).Google Scholar
  41. 41.
    A. Guinier, Heterogeneities in Solid Solutions (Academic, New York, 1959; Inostrannaya Literatura, Moscow, 1962).Google Scholar
  42. 42.
    R. I. Kuznetsova, S. Z. Fedorenko, G. M. Tsoi, and N. N. Zhukov, Fiz. Met. Metalloved. 42(1), 75 (1976).Google Scholar
  43. 43.
    V. I. Fadeeva, A. A. Leonov, G. K. Ryasnyi, and A. A. Sorokin, Neorg. Mater. 26(8), 1662 (1990).Google Scholar
  44. 44.
    H. El. Sayed and I. KovĂcs, Phys. Status Solidi A 24(1), 123 (1974).CrossRefGoogle Scholar
  45. 45.
    I. KovĂcs, Cryst. Res. Technol. 19(10), 1331 (1984).CrossRefGoogle Scholar
  46. 46.
    A. Gaber, N. Afify, and M. S. Mostafa, J. Phys. D: Appl. Phys. 23, 1119 (1990).CrossRefGoogle Scholar
  47. 47.
    D. H. Kim and B. Cantor, Philos. Mag. A 69(1), 45 (1994).CrossRefGoogle Scholar
  48. 48.
    I. I. Tashlykova-Bushkevich and M. Kolasik, in Proceedings of the IV International Conference on New Electrical and Electronic Technologies and Their Industrial Implementation (NEET’2005), Ed. by P. Wegierek and T. Kołtunowicz (Lublin University of Technology, Zakopane, Poland, 2005), p. 175.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • I. I. Tashlykova-Bushkevich
    • 1
  • E. S. Gut’ko
    • 2
  • V. G. Shepelevich
    • 2
  • S. M. Baraishuk
    • 3
  1. 1.Belarusian State University of Informatics and RadioelectronicsMinskBelarus
  2. 2.Belarusian State UniversityMinskBelarus
  3. 3.Belarussian State Pedagogical UniversityMinskBelarus

Personalised recommendations