Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 6, pp 686–700 | Cite as

Taking into Account the Ground Effect on Aircraft Wake Vortices When Estimating Their Circulation from Lidar Measurements

  • I. N. SmalikhoEmail author
OPTICAL INSTRUMENTATION
  • 8 Downloads

Abstract

An algorithm developed earlier for estimating the circulation of aircraft wake vortices from measurements by a Stream Line pulsed coherent Doppler lidar has been improved by using the model of a pair of aircraft vortices in the algorithm. The model takes into account the ground effect on the spatial dynamics and evolution of the vortices. In a numerical experiment, it has been shown that the improved algorithm allows one to obtain the result with a high accuracy whereas the approach used earlier overestimates the lidar measured vortex circulation approximately by 10%.

Keywords:

coherent Doppler lidar aircraft wake vortices 

Notes

CONFLICT OF INTEREST

The author declares that he has no conflicts of interest.

REFERENCES

  1. 1.
    V. I. Babkin, A. S. Belotserkovskii, L. I. Turchak, N. A. Baranov, A. I. Zamyatin, M. I. Kanevskii, V. V. Morozov, I. V. Pasekunov, and N. Yu. Chizhov, Wave Turbulence Safety Flight Systems (Nauka, Moscow, 2008) [in Russian].Google Scholar
  2. 2.
    S. M. Hannon and J. A. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41 (11), 2175–2196 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    F. Kopp, S. Rahm, and I. Smalikho, “Characterization of aircraft wake vortices by 2-μm pulsed doppler lidar,” J. Atmos. Ocean. Technol. 21 (2), 194–206 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    R. G. Frehlich and R. Sharman, “Maximum likelihood estimates of vortex parameters from simulated coherent doppler lidar data,” J. Atmos. Ocean. Technol. 22 (2), 117–129 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    S. Rahm and I. Smalikho, “Aircraft wake vortex measurement with airborne coherent doppler lidar,” J. Aircr. 45 (4), 1148–1155 (2008).CrossRefGoogle Scholar
  6. 6.
    H. S. Wassaf, D. C. Burnham, and F. Y. Wang, “Wake vortex Tangential Velocity Adaptive Spectral (TVAS) algorithm for pulsed lidar systems,” in Proc. of the 16th Bi-Annual Coherent Laser Radar Conf. Session 9—Wind Measurement Systems II. 20–24 June2011, California. Google Scholar
  7. 7.
    I. N. Smalikho and V. A. Banakh, “Estimation of aircraft wake vortex parameters from data measured with 1.5 micron coherent doppler lidar,” Opt. Lett. 40 (14), 3408–3411 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    I. N. Smalikho, V. A. Banakh, F. Holzapfel, and S. Rahm, “Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent doppler lidar,” Opt. Express 23 (19), A1194–A1207 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    E. Yoshikawa and N. Matayoshi, “Aircraft wake vortex retrieval method on lidar lateral range-height indicator observation,” AIAA J. 55 (7), 2269–2278 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    H. Gao, J. Li, P. W. Chan, K. K. Hon, and X. Wang, “Parameter-retrieval of dry-air wake vortices with a scanning doppler lidar,” Opt. Express 26 (13), 16377–16392 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    S. Wu, X. Zhai, and B. Liu, “Aircraft wake vortex and turbulence measurement under near-ground effect using coherent doppler lidar,” Opt. Express 27 (2), 1142–1163 (2019).ADSCrossRefGoogle Scholar
  12. 12.
    T. Gerz, F. Holzapfel, and D. Darracq, “Commercial aircraft wake vortices,” Prog. Aerosp. Sci. 38, 181–208 (2002).CrossRefGoogle Scholar
  13. 13.
    R. E. Robin, D. P. Delisi, and G. C. Greene, “Algorithm for prediction of trailing vortex evolution,” J. Aircr. 38 (5), 911–917 (2001).CrossRefGoogle Scholar
  14. 14.
    G. Pierson, F. Davies, and C. Collier, “An analysis of performance of the UFAM pulsed doppler lidar for the observing the boundary layer,” J. Atmos. Ocean. Technol. 26 (2), 240–250 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    I. N. Smalikho, V. A. Banakh, and A. V. Falits, “Measurements of aircraft wake vortex parameters by a Stream Line Doppler lidar,” Atmos. Ocean. Opt. 30 (6), 588–595 (2017).CrossRefGoogle Scholar
  16. 16.
    I. N. Smalikho, V. A. Banakh, A. V. Falits, and A. A. Sukharev, “An experiment on the study of aircraft wake vortices at the airfield of Tolmachevo Airport in 2018,” Opt. Atmos. Okeana 32 (8), 609–619 (2019).Google Scholar
  17. 17.
    V. A. Banakh and I. N. Smalikho, Coherent Doppler Wind Lidars (Artech Housу, Boston-London, 2013).Google Scholar
  18. 18.
    H. Lamb, Hydrodynamics (Dover, New York, 1932).Google Scholar
  19. 19.
    D. C. Burnham and J. N. Hallock, Chicago Monostatic Acoustic Vortex Sensing System (U.S. Department of Transportation, 1982).Google Scholar
  20. 20.
    C. W. Schwarz, K. U. Hahn, and D. Fischenberg, “Wake encounter severity assessment based on validated aerodynamic interaction models,” in AIAA Guidance, Navigation, and Control Conf., 2–5 August 2010, Toronto, Ontario, Canada. http://www.wakenet.eu/fileadmin/user_ upload/News%26Publications/AIAA-237438-765.pdf. Cited April 22, 2019.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations