Taking into Account the Ground Effect on Aircraft Wake Vortices When Estimating Their Circulation from Lidar Measurements
OPTICAL INSTRUMENTATION
First Online:
- 8 Downloads
Abstract
An algorithm developed earlier for estimating the circulation of aircraft wake vortices from measurements by a Stream Line pulsed coherent Doppler lidar has been improved by using the model of a pair of aircraft vortices in the algorithm. The model takes into account the ground effect on the spatial dynamics and evolution of the vortices. In a numerical experiment, it has been shown that the improved algorithm allows one to obtain the result with a high accuracy whereas the approach used earlier overestimates the lidar measured vortex circulation approximately by 10%.
Keywords:
coherent Doppler lidar aircraft wake vorticesNotes
CONFLICT OF INTEREST
The author declares that he has no conflicts of interest.
REFERENCES
- 1.V. I. Babkin, A. S. Belotserkovskii, L. I. Turchak, N. A. Baranov, A. I. Zamyatin, M. I. Kanevskii, V. V. Morozov, I. V. Pasekunov, and N. Yu. Chizhov, Wave Turbulence Safety Flight Systems (Nauka, Moscow, 2008) [in Russian].Google Scholar
- 2.S. M. Hannon and J. A. Thomson, “Aircraft wake vortex detection and measurement with pulsed solid-state coherent laser radar,” J. Mod. Opt. 41 (11), 2175–2196 (1994).ADSCrossRefGoogle Scholar
- 3.F. Kopp, S. Rahm, and I. Smalikho, “Characterization of aircraft wake vortices by 2-μm pulsed doppler lidar,” J. Atmos. Ocean. Technol. 21 (2), 194–206 (2004).ADSCrossRefGoogle Scholar
- 4.R. G. Frehlich and R. Sharman, “Maximum likelihood estimates of vortex parameters from simulated coherent doppler lidar data,” J. Atmos. Ocean. Technol. 22 (2), 117–129 (2005).ADSCrossRefGoogle Scholar
- 5.S. Rahm and I. Smalikho, “Aircraft wake vortex measurement with airborne coherent doppler lidar,” J. Aircr. 45 (4), 1148–1155 (2008).CrossRefGoogle Scholar
- 6.H. S. Wassaf, D. C. Burnham, and F. Y. Wang, “Wake vortex Tangential Velocity Adaptive Spectral (TVAS) algorithm for pulsed lidar systems,” in Proc. of the 16th Bi-Annual Coherent Laser Radar Conf. Session 9—Wind Measurement Systems II. 20–24 June2011, California. Google Scholar
- 7.I. N. Smalikho and V. A. Banakh, “Estimation of aircraft wake vortex parameters from data measured with 1.5 micron coherent doppler lidar,” Opt. Lett. 40 (14), 3408–3411 (2015).ADSCrossRefGoogle Scholar
- 8.I. N. Smalikho, V. A. Banakh, F. Holzapfel, and S. Rahm, “Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent doppler lidar,” Opt. Express 23 (19), A1194–A1207 (2015).ADSCrossRefGoogle Scholar
- 9.E. Yoshikawa and N. Matayoshi, “Aircraft wake vortex retrieval method on lidar lateral range-height indicator observation,” AIAA J. 55 (7), 2269–2278 (2017).ADSCrossRefGoogle Scholar
- 10.H. Gao, J. Li, P. W. Chan, K. K. Hon, and X. Wang, “Parameter-retrieval of dry-air wake vortices with a scanning doppler lidar,” Opt. Express 26 (13), 16377–16392 (2018).ADSCrossRefGoogle Scholar
- 11.S. Wu, X. Zhai, and B. Liu, “Aircraft wake vortex and turbulence measurement under near-ground effect using coherent doppler lidar,” Opt. Express 27 (2), 1142–1163 (2019).ADSCrossRefGoogle Scholar
- 12.T. Gerz, F. Holzapfel, and D. Darracq, “Commercial aircraft wake vortices,” Prog. Aerosp. Sci. 38, 181–208 (2002).CrossRefGoogle Scholar
- 13.R. E. Robin, D. P. Delisi, and G. C. Greene, “Algorithm for prediction of trailing vortex evolution,” J. Aircr. 38 (5), 911–917 (2001).CrossRefGoogle Scholar
- 14.G. Pierson, F. Davies, and C. Collier, “An analysis of performance of the UFAM pulsed doppler lidar for the observing the boundary layer,” J. Atmos. Ocean. Technol. 26 (2), 240–250 (2009).ADSCrossRefGoogle Scholar
- 15.I. N. Smalikho, V. A. Banakh, and A. V. Falits, “Measurements of aircraft wake vortex parameters by a Stream Line Doppler lidar,” Atmos. Ocean. Opt. 30 (6), 588–595 (2017).CrossRefGoogle Scholar
- 16.I. N. Smalikho, V. A. Banakh, A. V. Falits, and A. A. Sukharev, “An experiment on the study of aircraft wake vortices at the airfield of Tolmachevo Airport in 2018,” Opt. Atmos. Okeana 32 (8), 609–619 (2019).Google Scholar
- 17.V. A. Banakh and I. N. Smalikho, Coherent Doppler Wind Lidars (Artech Housу, Boston-London, 2013).Google Scholar
- 18.H. Lamb, Hydrodynamics (Dover, New York, 1932).Google Scholar
- 19.D. C. Burnham and J. N. Hallock, Chicago Monostatic Acoustic Vortex Sensing System (U.S. Department of Transportation, 1982).Google Scholar
- 20.C. W. Schwarz, K. U. Hahn, and D. Fischenberg, “Wake encounter severity assessment based on validated aerodynamic interaction models,” in AIAA Guidance, Navigation, and Control Conf., 2–5 August 2010, Toronto, Ontario, Canada. http://www.wakenet.eu/fileadmin/user_ upload/News%26Publications/AIAA-237438-765.pdf. Cited April 22, 2019.Google Scholar
Copyright information
© Pleiades Publishing, Ltd. 2019