Atmospheric and Oceanic Optics

, Volume 32, Issue 6, pp 628–642 | Cite as

Simultaneous Reconstruction of the Complex Refractive Index and the Particle Size Distribution Function from Lidar Measurements: Testing the Developed Algorithms

  • S. V. SamoilovaEmail author


A method for the joint determination of microphysical aerosol characteristics, namely, the complex refractive index \(m = m_{\text{real}}^{{}} + im_{\text{image}}^{{}}\) and spherical-particle size distribution function U(r), from the data of nighttime lidar sensing at wavelengths of 355–1064 nm is proposed. During their simultaneous estimations, it is useful to directly minimize the discrepancy functional Φ(m) in the range of the physically justified m. The principal limitations due to a wider region of the global minima of Φ(m) appear at \(m_{{{\text{image}}}}^{{{\text{true}}}} \in \) [0.01, 0.04] and give rise to a potential shift of the resulting values of \(m_{\text{real}}^{\text{est}}\) and \(m_{\text{image}}^{\text{est}}\). A simultaneous use of several functionals gives a better estimate of m due to different sets of the respective optical characteristics. The problem in retrieving the size distribution function is caused by the information content of the coarse particle measurements. The statistical regularization method offers an unambiguous estimation of U(r) for the mean radius up to 3 µm and gives an admissible estimate for larger radii. The algorithms are tested on eight values of absorption, when one value corresponding to one \(m_{\text{image}}^{\text{true}}\) is associated with 50 empirical models of the distribution function.


aerosol lidar particle size distribution function complex refractive index 



This work was supported in part by the Russian Foundation for Basic Research and Tomsk oblast (project no. 19-48-700014) in regard to theoretical investigations. The empirical material was obtained under financial support of project no. AAAA-A17-117021310142-5.

The author would like to give tribute to the memory of M.A. Sviridenkov. Section 1 and Subsection 2.1 are the result of our joint work.


The author declares that she has no conflicts of interest.


  1. 1.
    L. A. Remer, Y. J. Kaufman, D. Tanre, S. Mattoo, D. A. Chu, J. V. Martins, R.-R. Li, C. Ichoku, R. C. Levi, R. G. Kleidman, T. F. Eck, E. Vermote, and B. N. Holben, “The MODIS aerosol algorithm, products, and validation,” J. Atmos. Sci. 62, 947–973 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    D. Tanre, F. M. Breon, J. L. Deuse, O. Dubovik, F. Ducos, P. Francois, P. Goloub, M. Herman, A. Lifermann, and F. Waquet, “Remote sensing of aerosol by using polarized, directional and spectral measurements within the A-Train: The PARASOL mission,” Atmos. Meas. Tech. Discuss. 4, 2037–2069 (2011).CrossRefGoogle Scholar
  3. 3.
    D. M. Winker, M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, “Overview of the CALIPSO Mission and CALIOP data processing algorithms,” J. Atmos. Ocean. Technol. 26, 2310–2323 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1–16 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    O. V. Dubovik, T. V. Lapyonok, and S. L. Oshchepkov, “Improved technique for data inversion: Optical sizing of multicomponent aerosols,” Appl. Opt. 34, 8422–8436 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    O. V. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements,” J. Geophys. Res. 105, 20 673–20 696 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    J. Bosenberg, A. Ansmann, J. M. Baldasano, D. Balis, C. Bockmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hagard, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, T. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European aerosol research lidar network,” in Advances in Laser Remote Sensing, Ed. by A. Dabas, C. Loth, and J. Pelon (Editions de L’Ecole Polytechnique, 2000), p. 155–158.Google Scholar
  8. 8.
    T. Murayama, N. Sugimoto, I. Uno, K. Kinoshita, K. Aoki, N. Hagiwara, Z. Liu, I. Matsui, T. Sakai, T. Shibata, K. Arao, B.-J. Sohn, J.-G. Won, S.-C. Yoon, T. Li, J. Zhou, H. Hu, M. Abo, K. Iokibe, R. Koga, and Y. Iwasaka, “Ground-based network observation of Asian dust events of April 1998 in East Asia,” J. Geophys. Res. 106, 18 345–18 359 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    A. P. Chaikovsky, A. P. Ivanov, Yu. S. Balin, A. V. Elnikov, G. F. Tulinov, I. I. Plusnin, O. A. Bukin, and B. B. Chen, “CIS-LiNet—lidar network for monitoring aerosol and ozone in CIS regions,” in Reviewed and Revised Papers Presented at the 23d ILRC, Ed. by C. Nagasava and N. Sugimoto (Nara, Japan, 2006), p. 671–672.Google Scholar
  10. 10.
    J. Bosenberg and R. M. Hoff, Plan for the Implementation of the GAW Aerosol Lidar Observation Network GALION (WMO, 2007), no. 1443.Google Scholar
  11. 11.
    S. P. Burton, E. Chemyakin, X. Liu, K. Knobelspiesse, S. Stamnes, P. Sawamura, R. H. Moore, C. A. Hostetler, and R. A. Ferrare, “Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals,” Atmos. Meas. Tech 9, 5555–5574 (2016).CrossRefGoogle Scholar
  12. 12.
    G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D' Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: Towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7, 2389–2409 (2014).CrossRefGoogle Scholar
  13. 13.
    S. V. Samoilova and Yu. S. Balin, “Reconstruction of the aerosol optical parameters from the data of sensing with a multifrequency raman lidar,” Appl. Opt. 47, 6816–6831 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    K. Willeke and K. T. Whitby, “Atmospheric aerosol: Size distribution interpretation,” J. Air Poll. Control Assoc. 25, 529–534 (1975).CrossRefGoogle Scholar
  15. 15.
    J. T. Twitty, “The inversion of aureole measurements to derive aerosol size distributions,” J. Atmos. Sci. 32, 584–591 (1975).ADSCrossRefGoogle Scholar
  16. 16.
    G. I. Gorchakov, I. A. Gorchakova, E. A. Lykosov, V. G. Tolstobrov, and L. S. Turovtseva, “Determination of the smoke have refractive index and microstructure,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 12 (6), 612–619 (1976).Google Scholar
  17. 17.
    V. V. Veretennikov, I. E. Naats, M. V. Panchenko, and V. Ya. Fadeev, “Determination of the smoke have refractive index and microstructure from polarization characteristics of light scattering,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 14 (12), 1313–1317 (1978).Google Scholar
  18. 18.
    V. V. Veretennikov, V. S. Kozlov, I. E. Naats, and V. Ya. Fadeev, “Optical studies of smoke aerosol: An inversion method and its applications,” Opt. Lett. 4, 411–413 (1979).ADSCrossRefGoogle Scholar
  19. 19.
    V. E. Zuev and I. E. Naats, Inverse Problems of Laser Sounding (Nauka, Novosibirsk, 1982) [in Russian].Google Scholar
  20. 20.
    R. F. Rakhimov, V. S. Kozlov, M. V. Panchenko, A. G. Tumakov, and V. P. Shmargunov, “Properties of atmospheric aerosol in smoke plumes from forest fires according to spectronephelometer measurements,” Atmos. Ocean. Opt. 27 (3), 275–282 (2014).CrossRefGoogle Scholar
  21. 21.
    E. V. Makienko, R. F. Rakhimov, Yu. A. Pkhalagov, and V. N. Uzhegov, “Microphysical interpretation of the anomalous spectral behavior of aerosol extinction along a ground path,” Atmos. Ocean. Opt. 16 (12), 1008–1012 (2003).Google Scholar
  22. 22.
    V. V. Veretennikov, ”Simultaneous determination of aerosol microstructure and refractive index from sun photometry data,” Atmos. Ocean. Opt. 20 (3), 192–199 (2007).Google Scholar
  23. 23.
    V. V. Veretennikov, ”Retrieval of microstructure parameters of coarse-mode aerosol using their regression relationships with spectral extinction of light in the IR,” Atmos. Ocean. Opt. 30 (6), 554–563 (2017).Google Scholar
  24. 24.
    T. V. Bedareva, M. A. Sviridenkov, and T. B. Zhuravleva, “Retrieval of aerosol optical and microphysical characteristics according to data of ground-based spectral measurements of direct and scattered solar radiation. Part 1. Testing of algorithm,” Atmos. Ocean. Opt. 26 (1), 24–34 (2013).CrossRefGoogle Scholar
  25. 25.
    F. C. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc, New York, 1983).Google Scholar
  26. 26.
    D. Muller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: Theory,” Appl. Opt. 38, 2346–2357 (1999).ADSCrossRefGoogle Scholar
  27. 27.
    C. Bockmann, “Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distribution,” Appl. Opt. 40, 1329–1342 (2001).ADSCrossRefGoogle Scholar
  28. 28.
    C. Bockmann, I. Mironova, D. Muller, L. Schneidenbach, and R. Nessler, “Microphysical aerosol parameters from multiwavelength lidar,” J. Opt. Soc. Am. A 22 (3), 518–528 (2005).ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    I. Veselovskii, A. Kolgotin, V. Griaznov, D. Muller, K.  Franke, and D. M. Whiteman, “Inversion of multiwavelength raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43, 1180–1195 (2004).ADSCrossRefGoogle Scholar
  30. 30.
    I. Veselovski, A. Kolgotin, D. Muller, and D. M. Whiteman, “Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis,” Appl. Opt. 44, 5292–5303 (2005).ADSCrossRefGoogle Scholar
  31. 31.
    A. Kolgotin and D. Muller, “Theory of inversion with two-dimensional regularization: Profiles of microphysical particle properties derived from multiwavelength lidar measurements,” Appl. Opt. 47, 4472–4490 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    A. H. Omar, D. M. Winker, M. A. Vaughan, Y. Hu, Ch. H. Trepte, R. A. Ferrare, K.-P. Lee, Ch. A. Hostetler, Ch. Kittaka, R. R. Rogers, R. E. Kuehn, and Zh. Lie, “The CALIPSO automated aerosol classification and lidar ratio selection algorithm,” J. Atmos. Ocean. Technol 26 (10), 1994–2014 (2009).ADSCrossRefGoogle Scholar
  33. 33.
    I. Veselovskii, O. Dubovik, A. Kolgotin, T. Lapyonok, P. Di Girolamo, D. Summa, D. M. Whiteman, M. Mishchenko, and D. Tanre, “Application of randomly oriented spheroids for retrieval of dust particle parameters from multiwavelength lidar measurements,” J. Geophys. Res. 115, D21203 (2010).ADSCrossRefGoogle Scholar
  34. 34.
    I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. N. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech 5, 1135–1145 (2012).CrossRefGoogle Scholar
  35. 35.
    D. Muller, I. Veselovskii, A. Kolgotin, M. Tesche, A. Ansmann, and O. Dubovik, “Vertical profiles of pure dust and mixed smoke-dust plumes inferred from inversion of multiwavelength raman/polarization lidar data and comparison to AERONET retrievals and in situ observations,” Appl. Opt. 52, 3178–3202 (2013).ADSCrossRefGoogle Scholar
  36. 36.
    J. Wagner, A. Ansmann, U. Wandinger, P. Seifert, A. Chwarz, M. Tesche, A. Chaikovsky, and O. Dubovik, “Evaluation of the Lidar/Radiometer Inversion Code (LIRIC) to determinate microphysical properties of volcanic and desert dust,” Atmos. Meas. Tech. 6, 1707–1724 (2013).CrossRefGoogle Scholar
  37. 37.
    E. Chemyakin, D. Muller, Sh. Burton, A. Kolgotin, Ch. Hostetler, and R. Ferrare, “Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data,” Appl. Opt. 53, 7252–7266 (2014).ADSCrossRefGoogle Scholar
  38. 38.
    E. Chemyakin, S. Burton, A. Kolgotin, D. Muller, C. Hostetler, and R. Ferrare, “Retrieval of aerosol parameters from multiwavelength lidar: Investigation of the underlying inverse mathematical problem,” Appl. Opt. 5, 2188–2202 (2016).ADSCrossRefGoogle Scholar
  39. 39.
    M. Kahnert and E. Andersson, “How much information do extinction and backscattering measurements contain about the chemical composition of atmospheric aerosol?,” Atmos. Chem. Phys. 17, 3423–3444 (2017).ADSCrossRefGoogle Scholar
  40. 40.
    M. D. Alexandrov and M. I. Mishchenko, “Information content of bistatic lidar observations of aerosols from space,” Opt. Express. 25 (4), A134–A150 (2017).ADSCrossRefGoogle Scholar
  41. 41.
    M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles (Academic Press, San Diego, CA, USA, 2000).Google Scholar
  42. 42.
    M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, United Kingdom, 2002).Google Scholar
  43. 43.
    O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorikin, and I. Slutsker, “Application of spheroid momels to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006).ADSCrossRefGoogle Scholar
  44. 44.
    S. V. Samoilova, M. A. Sviridenkov, and I. E. Penner, “Retrieval of the particle size distribution funcion from the data of lidar sensing under the assumption of known refractive index,” Appl. Opt. 55, 8022–8029 (2016).ADSCrossRefGoogle Scholar
  45. 45.
    S. V. Samoilova, “Retrieval of complex refractive index from lidar measurements: possibilities and limitations,” Opt. Atmos. Okeana 27 (3), 197–206 (2014).Google Scholar
  46. 46.
    S. V. Samoilova, I. E. Penner, G. P. Kokhanenko, and Yu. S. Balin, “Simultaneous reconstruction of two microphysical aerosol characteristics from the lidar data,” J. Quant. Spectrosc. Radiat. Transfer 222–223, 35–44 (2019).ADSCrossRefGoogle Scholar
  47. 47.
    Ch. Verhaege, V. Shcherbakov, and P. Personne, “Limitations on retrieval of complex refractive index of spherical particles from scattering measurements,” J. Quant. Spectrosc. Radiat. Transfer 109, 2338–2348 (2008).ADSCrossRefGoogle Scholar
  48. 48.
    Ch. Verhaege, V. Shcherbakov, and P. Personne, “Retrieval of complex refractive index and size distribution of spherical particles from dual-polarization polar nephelometer data,” J. Quant. Spectrosc. Radiat. Transfer 110, 1690–1697 (2009). ADSCrossRefGoogle Scholar
  49. 49.
    A. Lopatin, O. Dubovik, A. Chaikovsky, P. Goloub, T. Lapyonok, D. Tanre, and P. Litvinov, “Enhancement of aerosol characterization using synergy of lidar and sun-photometer coincident observations: The GARRLiC algorithm,” Atmos. Meas. Tech. 6, 2065–2088 (2013).CrossRefGoogle Scholar
  50. 50.
    A. Chaikovsky, O. Dubovik, B. Holben, A. Bril, Ph. Goloub, D. Tanre, G. Pappalardo, U. Wandinger, L. Chaikovskaya, S. Denisov, J. Grudo, A. Lopatin, Ya. Karol, T. Lapyonok, V. Amiridis, A. Ansmann, and A. Apituley, L. Allados-Arboledas, I. Binietoglou, A. Boselli, G. D’Amico, V. Freudenthaler, D. Giles, M. J. Granados-Munoz, P. Kokkalis, D. Nicolae, S. Oshchepkov, A. Papayannis, M. R. Perrone, A. Pietruczuk, F. Rocadenbosch, M. Sicard, I. Slutsker, C. Talianu, Tomasi De, Tsekeri F., Wagner A., and X. Wang, “Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: Development and distribution in EARLINET,” Atmos. Meas. Tech. 9, 1181–1205 (2016). CrossRefGoogle Scholar
  51. 51.
    A. N. Tikhonov and V. Ya. Arsenin, Methods for Solution of Incorrect Problems (Nauka, Moscow, 1986) [in Russian].Google Scholar
  52. 52.
    G. I. Vasilenko, Signal Retrieval Theory (Sovetskoe radio, Moscow, 1979) [in Russian].Google Scholar
  53. 53.
    S. Samoilova, M. Sviridenkov, I. Penner, G. Kokhanenko, and Yu. Balin, “Retrieval of the tropospheric aerosol microphysical characteristics from the data of multifrequency lidar sensing,” EPJ Web Conf. 2018. 28th Laser Radar Conf. 176. Cited June 28, 2019).CrossRefGoogle Scholar
  54. 54.
    T. V. Bedareva, M. A. Sviridenkov, and T. B. Zhuravleva, “Retrieval of aerosol optical and microphysical characteristics according to data from ground-based spectral measurements of direct and diffuse solar radiation. Part 2. Algorithm testing,” Atmos. Ocean. Opt. 26 (2), 107–117 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations